Advertisement

Interpolant-Based Transition Relation Approximation

  • Ranjit Jhala
  • K. L. McMillan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3576)

Abstract

In predicate abstraction, exact image computation is problematic, requiring in the worst case an exponential number of calls to a decision procedure. For this reason, software model checkers typically use a weak approximation of the image. This can result in a failure to prove a property, even given an adequate set of predicates. We present an interpolant-based method for strengthening the abstract transition relation in case of such failures. This approach guarantees convergence given an adequate set of predicates, without requiring an exact image computation. We show empirically that the method converges more rapidly than an earlier method based on counterexample analysis.

Keywords

Model Check Transition Relation Propositional Formula State Formula Abstract Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis. In: POPL, pp. 1–3 (2002)Google Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: CAV, pp. 154–169 (2000)Google Scholar
  5. 5.
    Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In: LICS, pp. 51–60 (2001)Google Scholar
  7. 7.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL, pp. 232–244 (2004)Google Scholar
  8. 8.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic 62(2), 457–486 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In: CAV, pp. 141–153 (2003)Google Scholar
  10. 10.
    McMillan, K.L.: Interpolation and sat-based model checking. In: CAV, pp. 1–13 (2003)Google Scholar
  11. 11.
    McMillan, K.L.: An interpolating prover. Theoretical Computer Science (2005) (to appear)Google Scholar
  12. 12.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic 62(2), 981–998 (1997)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Rubini, A., Corbet, J.: Linux Device Drivers. O’Reilly, Sebastopol (2001)Google Scholar
  15. 15.
    Saïdi, H., Graf, S.: Construction of abstract state graphs with PVS. In: CAV, pp. 72–83 (1997)Google Scholar
  16. 16.
    Majumdar, R., Henzinger, T.A., Jhala, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ranjit Jhala
    • 1
  • K. L. McMillan
    • 2
  1. 1.University of CaliforniaSan Diego
  2. 2.Cadence Berkeley Labs 

Personalised recommendations