Automated Assume-Guarantee Reasoning for Simulation Conformance

  • Sagar Chaki
  • Edmund Clarke
  • Nishant Sinha
  • Prasanna Thati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3576)

Abstract

We address the issue of efficiently automating assume-guarantee reasoning for simulation conformance between finite state systems and specifications. We focus on a non-circular assume-guarantee proof rule, and show that there is a weakest assumption that can be represented canonically by a deterministic tree automata (DTA). We then present an algorithm LT that learns this DTA automatically in an incremental fashion, in time that is polynomial in the number of states in the equivalent minimal DTA. The algorithm assumes a teacher that can answer membership and candidate queries pertaining to the language of the unknown DTA. We show how the teacher can be implemented using a model checker. We have implemented this framework in the COMFORT toolkit and we report encouraging results (over an order of magnitude improvement in memory consumption) on non-trivial benchmarks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Cerný, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for java classes. In: POPL, pp. 98–109 (2005)Google Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barringer, H., Giannakopoulou, D., Pasareanu, C.S.: Proof rules for automated compositional verification. In: Proc. of the 2nd Workshop on SAVCBS (2003)Google Scholar
  4. 4.
    Bernard, M., de la Higuera, C.: Gift: Grammatical inference for terms. In: International Conference on Inductive Logic Programming (1999)Google Scholar
  5. 5.
    Carrasco, R.C., Oncina, J., Calera-Rubio, J.: Stochastic inference of regular tree languages. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 187–198. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Chaki, S., Clarke, E., Groce, A., Ouaknine, J., Strichman, O., Yorav, K.: Efficient verification of sequential and concurrent C programs. FMSD 25(2–3) (2004)Google Scholar
  7. 7.
    Chaki, S., Ivers, J., Sharygina, N., Wallnau, K.: The comFoRT reasoning framework. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 164–169. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: LICS (1989)Google Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Proc. of CAV (2000)Google Scholar
  10. 10.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Transactions on Programming Languages and System (TOPLAS) 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  12. 12.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications, ch.1 (2002), available at http://www.grappa.univ-lille3.fr/tata
  14. 14.
    Drewes, F., Hogberg, J.: Learning a regular tree language. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. In: Proc. of ICSE (1999)Google Scholar
  16. 16.
    García, P., Oncina, J.: Inference of recognizable tree sets. Technical Report II/47/1993, Dept. de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (1993)Google Scholar
  17. 17.
    Gold, E.M.: Language identification in the limit. Information and Control 10(5) (1967)Google Scholar
  18. 18.
    Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Tools and Algorithms for Construction and Analysis of Systems, 357–370 (2002)Google Scholar
  20. 20.
    Habermehl, P., Vojnar, T.: Regular model checking using inference of regular languages. In: Proc. of INFINITY 2004 (2004)Google Scholar
  21. 21.
    García, P., Oncina, J.: Identifying regular languages in polynomial time. Advances in Structural and Syntactic Pattern Recognition. World Scientific Publishing, Singapore (1992)Google Scholar
  22. 22.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE/PSTV (1999)Google Scholar
  23. 23.
    Pnueli, A.: In transition from global to modular temporal reasoning about programs. Logics and models of concurrent systems, 123–144 (1985)Google Scholar
  24. 24.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Information and Computation 103(2), 299–347 (1993)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time. Theoretical Computer Science (TCS) 76(2-3), 223–242 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sagar Chaki
  • Edmund Clarke
  • Nishant Sinha
  • Prasanna Thati

There are no affiliations available

Personalised recommendations