SMT-COMP: Satisfiability Modulo Theories Competition

  • Clark Barrett
  • Leonardo de Moura
  • Aaron Stump
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3576)

Abstract

Decision procedures for checking satisfiability of logical formulas are crucial for many verification applications (e.g., [2,6,3]). Of particular recent interest are solvers for Satisfiability Modulo Theories (SMT). SMT solvers decide logical satisfiability (or dually, validity) with respect to a background theory in classical first-order logic with equality. Background theories useful for verification are supported, like equality and uninterpreted functions (EUF), real or integer arithmetic, and theories of bitvectors and arrays. Input formulas are often syntactically restricted; for example, to be quantifier-free or to involve only difference constraints. Some solvers support a combination of theories, or quantifiers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le Berre, D., Simon, L.: The essentials of the SAT 2003 competition. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 452–467. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Jin, H., Han, H., Somenzi, F.: Efficient Conflict Analysis for Finding All Satisfying Assignments of a Boolean Circuit. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 287–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Lerner, S., Millstein, T., Chambers, C.: Automatically Proving the Correctness of Compiler Optimizations. In: Gupta, R. (ed.) ACM SIGPLAN Conference on Programming Language Design and Implementation (2003) (received best paper award)Google Scholar
  4. 4.
    Pelletier, F.J., Sutcliffe, G., Suttner, C.B.: The Development of CASC. AI Communications 15(2-3), 79–90 (2002)MATHGoogle Scholar
  5. 5.
    Ranise, S., Tinelli, C.: The SMT-LIB standard, version 1.1 (2005), Available from the “Documents” section of, http://combination.cs.uiowa.edu/smtlib
  6. 6.
    Velev, M., Bryant, R.: Effective Use of Boolean Satisfiability Procedures in the Formal Verification of Superscalar and VLIW Microprocessors. Journal of Symbolic Computation 35(2), 73–106 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Zantema, H.: personal communication (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Clark Barrett
    • 1
  • Leonardo de Moura
    • 2
  • Aaron Stump
    • 3
  1. 1.Department of Computer ScienceNew York University 
  2. 2.Computer Science LaboratorySRI International 
  3. 3.Department of Computer Science and EngineeringWashington University in St. Louis 

Personalised recommendations