Expand, Enlarge and Check... Made Efficient

  • Gilles Geeraerts
  • Jean-François Raskin
  • Laurent Van Begin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3576)

Abstract

The coverability problem is decidable for the class of well-structured transition systems. Until recently, the only known algorithm to solve this problem was based on symbolic backward reachability. In a recent paper, we have introduced the theory underlying a new algorithmic solution, called ‘Expand, Enlarge and Check’, which can be implemented in a forward manner. In this paper, we provide additional concepts and algorithms to turn this theory into efficient forward algorithms for monotonic extensions of Petri nets and Lossy Channels Systems. We have implemented a prototype and applied it on a large set of examples. This prototype outperforms a previous fine tuned prototype based on backward symbolic exploration and shows the practical interest of our new algorithmic solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General Decidability Theorems for Infinite-state Systems. In: Proc. of LICS 1996, pp. 313–321. IEEE, Los Alamitos (1996)Google Scholar
  2. 2.
    Abdulla, P., Annichini, A., Bouajjani, A.: Symbolic verification of lossy channel systems: Application to the bounded retransmission protocol. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 208–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward reachability analysis for verification of lossy channel systems. Form. Methods Syst. Des. 25(1), 39–65 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Ciardo, G.: Petri nets with marking-dependent arc multiplicity: properties and analysis. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 179–198. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Delzanno, G., Raskin, J.-F., Van Begin, L.: Attacking Symbolic State Explosion. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 298–310. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Namjoshi, K.S.: On Model Checking for Non-deterministic Infinite-state Systems. In: Proc. of LICS 1998, pp. 70–80. IEEE, Los Alamitos (1998)Google Scholar
  7. 7.
    Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadcast Protocols. In: Proc. of LICS 1999, pp. 352–359. IEEE, Los Alamitos (1999)Google Scholar
  8. 8.
    Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.) APN 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993)Google Scholar
  9. 9.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Finkel, A., Geeraerts, G., Raskin, J.-F., Van Begin, L.: A counter-example to the minimal coverability tree algorithm, Technical report ULB 535, http://www.ulb.ac.be/di/ssd/ggeeraer/papers/FGRV05-Coverability.pdf
  11. 11.
    Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, Enlarge and Check: new algorithms for the coverability problem of WSTS. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 287–298. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A., Kupferman, O., Qadeer, S.: From prehistoric to postmodern symbolic model checking. Formal Methods in System Design 23(3), 303–327 (2003)MATHCrossRefGoogle Scholar
  13. 13.
    Schnoebelen, P.: Verifying Lossy Channel Systems has Nonprimitive Recursive Complexity. Information Processing Letters 83(5), 251–261 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Van Begin, L.: Efficient Verification of Counting Abstractions for Parametric systems. PhD thesis, Université Libre de Bruxelles, Belgium (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gilles Geeraerts
    • 1
  • Jean-François Raskin
    • 1
  • Laurent Van Begin
    • 1
  1. 1.Département d’InformatiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations