Advertisement

Cogent: Accurate Theorem Proving for Program Verification

  • Byron Cook
  • Daniel Kroening
  • Natasha Sharygina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3576)

Abstract

Many symbolic software verification engines such as Slam and ESC/Java rely on automatic theorem provers. The existing theorem provers, such as Simplify, lack precise support for important programming language constructs such as pointers, structures and unions. This paper describes a theorem prover, Cogent, that accurately supports all ANSI-C expressions. The prover’s implementation is based on a machine-level interpretation of expressions into propositional logic, and supports finite machine-level variables, bit operations, structures, unions, references, pointers and pointer arithmetic. When used by Slam during the model checking of over 300 benchmarks, Cogent’s improved accuracy reduced the number of Slam timeouts by half, increased the number of true errors found, and decreased the number of false errors.

Keywords

Model Check Propositional Logic Static Check Pointer Arithmetic Bounded Model Checker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking for Java. In: PLDI (2002)Google Scholar
  2. 2.
    Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-oriented programs with invariants. JOT 3, 27–56 (2004)CrossRefGoogle Scholar
  3. 3.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Labs (2003)Google Scholar
  4. 4.
    Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier: Technology transfer of formal methods inside Microsoft. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic theorem proving for predicate abstraction refinement. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 457–461. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread modular abstraction refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 262–274. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate abstraction with minimum predicates. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 19–34. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ivers, J., Sharygina, N.: Overview of ComFoRT, a model checking reasoning framework. Technical Report CMU/SEI-2004-TN-018, CMU (2004)Google Scholar
  9. 9.
    Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  10. 10.
    Stump, A., Barrett, C., Dill, D.: CVC: a cooperating validity checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 87–105. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Cook, B., Kroening, D., Sharygina, N.: Accurate theorem proving for program verification. Technical Report 473, ETH Zurich (2005)Google Scholar
  12. 12.
    Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predicate abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 388–403. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Byron Cook
    • 1
  • Daniel Kroening
    • 2
  • Natasha Sharygina
    • 3
  1. 1.Microsoft Research 
  2. 2.ETH Zurich 
  3. 3.Carnegie Mellon University 

Personalised recommendations