Advertisement

Automatic Clinical Image Segmentation Using Pathological Modelling, PCA and SVM

  • Shuo Li
  • Thomas Fevens
  • Adam Krzyżak
  • Song Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3587)

Abstract

A general automatic method for clinical image segmentation is proposed. Tailored for the clinical environment, the proposed segmentation method consists of two stages: a learning stage and a clinical segmentation stage. During the learning stage, manually chosen representative images are segmented using a variational level set method driven by a pathologically modelled energy functional. Then a window-based feature extraction is applied to the segmented images. Principal component analysis (PCA) is applied to these extracted features and the results are used to train a support vector machine (SVM) classifier. During the clinical segmentation stage, the input clinical images are classified with the trained SVM. By the proposed method, we take the strengths of both machine learning and variational level set while limiting their weaknesses to achieve automatic and fast clinical segmentation. Both chest (thoracic) computed tomography (CT) scans (2D and 3D) and dental X-rays are used to test the proposed method. Promising results are demonstrated and analyzed. The proposed method can be used during preprocessing for automatic computer aided diagnosis.

Keywords

Image segmentation support vector machine machine learning principal component analysis dental X-rays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, S., Zhu, W., Liang, Z.-P.: Shape deformation: SVM regression and application to medical image segmentation. In: ICCV, pp. 209–216 (2001)Google Scholar
  2. 2.
    Li, S., Fevens, T., Krzyżak, A.: An SVM based framework for autonomous volumetric medical image segmentation using hierarchical and coupled level sets. In: Li, S., et al. (eds.) Computer Aided Radiology and Surgery (CARS), Chicago, USA, pp. 207–212 (2004)Google Scholar
  3. 3.
    Li, S., Fevens, T., Krzyżak, A.: Image segmentation adapted for clinical settings by combining pattern classification and level sets. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 160–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Lorigo, L.M., Grimson, W.E.L., Faugeras, O.D., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.-F.: Codimention-two geodesic active contours for the segmentation of tubular structures. In: IEEE Conf. Computer Vision and Pattern Recognition (2000)Google Scholar
  5. 5.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero crossings as optimal edge integrators. International Journal of Computer Vision 53, 225–243 (2003)CrossRefGoogle Scholar
  7. 7.
    Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(12), 1565–1578 (2002)CrossRefGoogle Scholar
  8. 8.
    Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, energy/bayes/mdl for multiband image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(9), 884–900 (1996)Google Scholar
  9. 9.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numer. Math. 66, 1–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Li, S., Fevens, T., Krzyżak, A., Li, S.: Level set segmentation for computer aided dental X-ray analysis. In: SPIE Conference on Medical Imaging, San Diego, USA (accepted 2005)Google Scholar
  11. 11.
    Chan, T., Vese, L.: Active contour model without edges. IEEE Trans. on Image Processing 24, 266–277 (2001)CrossRefGoogle Scholar
  12. 12.
    Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50(3), 271–293 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Samson, C., Blanc-Fraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. International Journal of Computer Vision 40(3), 187–197 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii (1991)Google Scholar
  15. 15.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  16. 16.
    Dong, J., Krzyżak, A., Suen, C.Y.: A fast parallel optimization for training support vector. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS (LNAI), vol. 2734, pp. 96–105. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Dong, J., Krzyżak, A., Suen, C.Y.: Fast SVM training algorithm with decomposition on very large training sets. IEEE Trans. on Pattern Analysis and Machine Intelligence (2005) (to appear)Google Scholar
  18. 18.
    Chang, C.-C., Lin, C.-J.: Training nu-support vector classifiers: theory and algorithms. Neural Computation 13(9), 2119–2147 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Holtzman-Gazit, M., Goldsher, D., Kimmel, R.: Hierarchical segmentation of thin structure in volumetric medical images. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 562–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10, 1169–1186 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shuo Li
    • 1
  • Thomas Fevens
    • 1
  • Adam Krzyżak
    • 1
  • Song Li
    • 2
  1. 1.Medical Imaging Group, Department of Computer Science and Software EngineeringConcordia UniversityMontréalCanada
  2. 2.School of StomatologyAnhui Medical UniversityHefeiP.R. China

Personalised recommendations