Granularity as a Parameter of Context

  • Hedda R. Schmidtke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3554)


Spatial and temporal granularity can be understood as parameters of context restricting the set of accessible objects in a context. Starting from the idea that this selection process depends to a large extent on the relation between the grain-size of the context and the local extension of the objects, the granularity of a context is in this article formalised as a class of possible sizes in the context. This formalisation is shown to be in accordance to well-known mathematical foundations on perceptual classification. An example for the case of temporal granularity illustrates how the introduction of new elements into a context may result in a more or less smooth shifting of the granularity leading to a classification of four different types of change of granularity. The results can be applied in a wide range of fields, e.g. in research on contextual reasoning and natural language understanding.


Temporal Context Time Granularity Vague Predi Contextual Reasoning Partitioning Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23, 123–154 (1984)zbMATHCrossRefGoogle Scholar
  2. 2.
    Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual reasoning distilled. Journal of Experimental and Theoretical Artificial Intelligence 12(3), 279–305 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bettini, C., Jajodia, S., Wang, X.S.: Time granularities in databases, data mining, and temporal reasoning. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  4. 4.
    Bittner, T., Smith, B.: A theory of granular partitions. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 117–151. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  5. 5.
    Bittner, T., Stell, J.G.: Stratified rough sets and vagueness. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) Spatial Information Theory: Foundations of Geographic Information Science, Berlin, pp. 270–286. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Fine, K.: Vagueness, truth, and logic. Synthese 30, 265–300 (1975)zbMATHCrossRefGoogle Scholar
  7. 7.
    Franceschet, M., Montanari, A.: Branching within time: an expressively complete and elementarily decidable temporal logic for time granularity. Research on Language and Computation 1(3–4), 229–263 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Frank, A.: The prevalence of objects with sharp boundaries in GIS. In: Burrough, P., Frank, A. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 29–40. Taylor & Francis, London (1996)Google Scholar
  9. 9.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)Google Scholar
  10. 10.
    Goodchild, M.: A geographer looks at spatial information theory. In: Montello, D. (ed.) Spatial Information Theory: Foundations of Geographic Information Science, Berlin, pp. 1–13. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Halpern, J.Y.: Intransitivity and vagueness. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Principles of Knowledge Representation and Reasoning: Proc. 9th Intl. Conf (KR 2004), pp. 121–129. AAAI Press, Menlo Park (2004)Google Scholar
  12. 12.
    Herskovits, A.: Schematization. In: Olivier, P., Gapp, K.-P. (eds.) Representation and Processing of Spatial Expressions, Erlbaum, Mahwah, NJ, pp. 149–162 (1998)Google Scholar
  13. 13.
    Hobbs, J.: Granularity. In: Proceedings of IJCAI 1985, pp. 432–435 (1985)Google Scholar
  14. 14.
    Hyde, D.: Sorites paradox. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. CSLI (internet publication), Stanford, Ca., Fall (2002)Google Scholar
  15. 15.
    Kosslyn, S.: Image and Mind. The MIT Press, Cambridge (1980)Google Scholar
  16. 16.
    Krifka, M.: Be brief and vague! and how bidirectional optimality theory allows for verbosity and precision. In: Restle, D., Zaefferer, D. (eds.) Sounds and Systems. Studies in Structure and Change. A Festschrift for Theo Vennemann, pp. 439–458. Mouton de Gruyter, Berlin (2002)Google Scholar
  17. 17.
    Mourelatos, A.: Events, processes, and states. Linguistics and Philosophy 2, 415–434 (1978)CrossRefGoogle Scholar
  18. 18.
    Ohlbach, H.: Calendrical calculations with time partitionings and fuzzy time intervals. In: Ohlbach, H., Schaffert, S. (eds.) Principles and Practice of Semantic Web Reasoning: Second International Workshop, Berlin, pp. 118–133 (2004)Google Scholar
  19. 19.
    Ohlbach, H.J., Gabbay, D.M.: Calendar logic. Journal of Applied Non-Classical Logics 8(4) (1998)Google Scholar
  20. 20.
    Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1994)Google Scholar
  21. 21.
    Reitsma, F., Bittner, T.: Scale in object and process ontologies. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 13–27. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Schmidtke, H.: A geometry for places: Representing extension and extended objects. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) Spatial Information Theory: Foundations of Geographic Information Science, Berlin, pp. 235–252. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Schmidtke, H.: Aggregations and constituents: geometric specification of multi-granular objects. Journal of Visual Languages and Computing (2005) (to appear)Google Scholar
  24. 24.
    Suppes, P., Zinnes, J.: Basic measurement theory. In: Luce, R., Bush, R., Galanter, E. (eds.) Handbook of Mathematical Psychology. John Wiley & Sons, New York (1963)Google Scholar
  25. 25.
    van Deemter, K.: The sorites fallacy and the context-dependence of vague predicates. In: Kanazawa, M., Pinon, C., de Swart, H. (eds.) Quantifiers, Deduction, and Context, pp. 59–86. CSLI Publications, Stanford (1995)Google Scholar
  26. 26.
    Varzi, A.: Vagueness. In: Nadel, L. (ed.) Encyclopedia of Cognitive Science, pp. 459–464. Macmillan and Nature Publishing Group, London (2003)Google Scholar
  27. 27.
    Zadeh, L.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hedda R. Schmidtke
    • 1
  1. 1.Department for InformaticsUniversity of HamburgHamburgGermany

Personalised recommendations