Advertisement

Contextual Information Systems

  • Carlos Martín-Vide
  • Victor Mitrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3554)

Abstract

A rather common way of formalizing contexts as first class objects starts from the basic relation ist(c,p) which asserts that the proposition p is true in the context c. However, the space in which terms take values may itself be context-sensitive. Our aim is to introduce contexts as abstract mathematical entities in a more general framework which includes context-sensitivity, namely knowledge represented by contextual information systems. Making use of some concepts from the Rough Set Theory we refine two relations: the indiscernibility relation between the objects and the similarity relation between the contexts within a contextual information system. Both relations are illustrated with examples showing how contextual information systems can express in a natural way a very few well known phenomena. Based on these relations we propose a simple strategy for decreasing the ambiguity of contextual information systems.

Keywords

Attribute Mapping Mathematical Linguistics Formal Concept Analysis Lexical Ambiguity Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanasiu, A., Martín-Vide, C., Mitrana, V.: On the sentence valuation in a semiring. Information Sciences 151, 107–124 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buvač, S., Buvač, V., Mason, I.A.: Metamathematics of contexts. Fundamenta Informaticae 23 (1995)Google Scholar
  3. 3.
    Dobrushin, R.L.: The elementary grammatical category. Byulleten Objedinenija po Problemam Mashinogo Perevoda 5, 19–21 (1957) (in Russian)Google Scholar
  4. 4.
    Ehrenfeucht, A., Păun, G., Rozenberg, G.: Contextual grammars and formal languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Ghindini, C., Serafini, L.: Distributed first order logics. In: Frontiers of Combining Systems 2 (Papers presented at FroCoS 1998), Research Studies Press, Wiley (1998)Google Scholar
  6. 6.
    Guha, R.V.: Contexts: A Formalization and Some Applications. PhD Thesis, Stanford University (1991)Google Scholar
  7. 7.
    Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bull. Math. Biology 49, 737–759 (1987)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Head, T., Păun, G., Pixton, D.: Language theory and molecular genetics. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Hirst, G.: Semantic Interpretation and the Resolution of Ambiguity. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  10. 10.
    Manes, E.G.: Additive domains. In: Melton, A.C. (ed.) MFPS 1985. LNCS, vol. 239, pp. 184–195. Springer, Heidelberg (1986)Google Scholar
  11. 11.
    Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534 (1969)zbMATHGoogle Scholar
  12. 12.
    Marcus, S.: Algebraic Linguistics. In: Analitical Models. Academic Press, London (1967)Google Scholar
  13. 13.
    McCarthy, J.: Notes on formalizing context. In: Proc. of the Thirteenth International Joint Conference on Artificial Intelligence IJCAI 1993, pp. 555–560 (1993)Google Scholar
  14. 14.
    McCarthy, J., Buvac̆, S.: Formalizing context. In: Aliseda, A., van Glabbeek, R., Westerståhl, D. (eds.) Computing Natural Language, Stanford University, pp. 13–50 (1997)Google Scholar
  15. 15.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1992)Google Scholar
  16. 16.
    Păun, G.: Marcus contextual grammars. After 25 years. Bulletin of the EATCS 52, 263–273 (1994)zbMATHGoogle Scholar
  17. 17.
    Păun, G.: Marcus Contextual Grammar. Kluwer, Dordrecht (1997)Google Scholar
  18. 18.
    Polkowski, L., Skowron, A.: Rough mereology. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 85–94. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Quasthoff, U.M.: Context. In: Asher, R.E. (ed.) Encyclopedia of Language and Linguistics, vol. 2, pp. 730–737. Pergamon Press, Oxford (1994)Google Scholar
  20. 20.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  21. 21.
    Sestier, A.: Contributions à une théorie ensembliste des classifications linguistique. Aces du Premier Congrès de l’AFCAL, Grenoble, 293–305 (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Carlos Martín-Vide
    • 1
  • Victor Mitrana
    • 1
    • 2
  1. 1.Research Group in Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations