Advertisement

The Cryptanalysis of the AES – A Brief Survey

  • Hans Dobbertin
  • Lars Knudsen
  • Matt Robshaw
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3373)

Abstract

The Advanced Encryption Standard is more than five years old. Since standardisation there have been few cryptanalytic advances despite the efforts of many researchers. The most promising new approach to AES cryptanalysis remains speculative, while the most effective attack against reduced-round versions is older than the AES itself. Here we summarise this state of affairs.

Keywords

Block Cipher Advance Encryption Standard Almost Perfect Nonlinear Data Encryption Standard Algebraic Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Mystery Twister web site: http://www.mystery-twister.com
  3. 3.
    Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Berlin (2002)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  5. 5.
    Biryukov, A.: The boomerang attack on 5 and 6-round reduced AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 11–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cid, C., Murphy, S., Robshaw, M.: Small Scale Variants of the AES. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Heidelberg (2005), to appear; see, http://www.isg.rhul.ac.uk/~ccid/publications.htm CrossRefGoogle Scholar
  7. 7.
    Cheon, J.H., Kim, M., Kim, K., Lee, J.-Y., Kang, S.: Improved impossible differential cryptanalysis of Rijndaeland Crypton. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Chun, K., Kim, S., Lee, S., Sung, S., Yoon, S.: Differential and linear cryptanalysis for 2-round SPNs. Information Processing Letters 87, 277–282 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Courtois, N.: Is AES a secure cipher?, http://www.cryptosystem.net/aes/
  10. 10.
    Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Daemen, J., Rijmen, V.: AES Proposal: Rijndael. Version 2.0, available via, http://www.crsc.nist.gov
  12. 12.
    Daemen, J., Rijmen, V.: Answers to “New Observations on Rijndael”. Archived via, http://www.crsc.nist.gov
  13. 13.
    Daemen, J., Rijmen, V.: The Design of Rijndael. In: AES - The Advanced Encryption Standard. Springer, Berlin (2002)Google Scholar
  14. 14.
    Diem, C.: The XL-algorithm and a conjecture from commutative Algebra. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Ferguson, N., Kelsey, J., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Ferguson, N., Shroeppel, R., Whiting, D.: A simple algebraic representation of the AES. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 103–111. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: 3rd Advanced Encryption Standard Candidate Conference, April 2000, pp. 230–241. National Institute of Standards and Technology (2000)Google Scholar
  18. 18.
    Hong, S., Lee, S., Lim, J., Sung, J., Cheon, D.: Provable security against differential and linear cryptanalysis for the spn structure. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 273–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Keliher, L.: Refined analysis of bounds related to linear and differential cryptanalysis for the AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 42–57. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Keliher, L., Meijer, H., Tavares, S.: New method for upper bounding the maximum average linear hull probability for SPNs. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 420–436. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Keliher, L., Meijer, H., Tavares, S.: Improving the upper bound on the maximum average linear hull probability for Rijndael. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 112–128. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Lucks, S.: Attacking seven rounds of Rijndael under 192-bit keys and 256-bit keys. In: Proceedings of the 3rd Advanced Encryption Standard Candidate Conference, National Institute of Standards and Technology, April 2000, pp. 215–229 (2000)Google Scholar
  23. 23.
    Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Standard. In: Desmedt, Y. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)Google Scholar
  24. 24.
    Minier, M.: A three rounds property of the AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 18–29. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Murphy, S., Robshaw, M.: New Observations on Rijndael, August 7 (2000), Archived via, http://www.crsc.nist.gov
  26. 26.
    Murphy, S., Robshaw, M.: Further Comments on the Structure of Rijndael, August 17 (2000), Archived via, http://www.crsc.nist.gov
  27. 27.
    Murphy, S., Robshaw, M.: Essential algebraic structure within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    National Institute of Standards and Technology: Advanced encryption standard, FIPS 46-3, US Department of Commerce, Washington D.C. (October 1999)Google Scholar
  29. 29.
    National Institute of Standards and Technology: Advanced encryption standard, FIPS 197, US Department of Commerce, Washington D.C. (November 2001)Google Scholar
  30. 30.
    Park, S., Sung, S.H., Chee, S., Yoon, E.-J., Lim, J.: On the security of Rijndael-like structures against differential and linear cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 176–191. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the upper bound on the maximum differential and the maximum linear hull probability for SPN structures and AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Phan, R.C.W.: Classes of impossible differentials of the advanced encryption standard. Electronics Letters 38(11), 508–510 (2002)CrossRefGoogle Scholar
  33. 33.
    Phan, R.C.W.: Impossible differential cryptanalysis of 7-round Advanced Encryption Standard. Information Processing Letters 91, 33–38 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Phan, R.C.W., Siddiqi, M.U.: Generalised impossible differentials of the Advanced Encryption Standard. Electronics Letters 37(14), 896–898 (2001)CrossRefGoogle Scholar
  35. 35.
    Raddum, H.: More Dual Rijndaels. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 142–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hans Dobbertin
    • 1
  • Lars Knudsen
    • 2
  • Matt Robshaw
    • 3
  1. 1.Cryptology and IT Security Research GroupRuhr-University of BochumGermany
  2. 2.Department of MathematicsTechnical University of DenmarkLyngbyDenmark
  3. 3.France Télécom Research and DevelopmentIssy MoulineauxFrance

Personalised recommendations