Reversible cellular automata (RCA) are models of massively parallel computation that preserve information. This paper is a short survey of research on reversible cellular automata over the past fourty plus years. We discuss the classic results by Hedlund, Moore and Myhill that relate injectivity, surjectivity and reversibility with each other. Then we review algorithmic questions and some results on computational universality. Finally we talk about local reversibility vs. global reversibility.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amoroso, S., Patt, Y.: Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures. Journal of Computer and System Sciences 6, 448–464 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bennett, C.: Logical reversibility of computation. IBM Journal of Research and Development 6, 525–532 (1973)CrossRefGoogle Scholar
  3. 3.
    Czeizler, E., Kari, J.: A tight linear bound on the neighborhood of inverse cellular automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 410–420. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Durand, B.: Global properties of 2D cellular automata. In: Goles, E., Martinez, S. (eds.) Cellular Automata and Complex Systems. Kluwer, Dordrecht (1998)Google Scholar
  5. 5.
    Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. In: Cori, R., Mazoyer, J., Morvan, M., Mosery, R. (eds.) Discrete Models, Combinatorics, Computation and Geometry, pp. 145–154. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Hedlund, G.: Endomorphisms and automorphisms of shift dynamical systems. Math. Systems Theory 3, 320–375 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ito, M., Osato, N., Nasu, M.: Linear Cellular Automata over Zm. Journal of Computer and System Sciences 27, 125–140 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 379–385 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kari, J.: On the Inverse Neighborhoods of Reversible Cellular Automata. In: Rozenberg, G., Salomaa, A. (eds.) Lindenmayer Systems, Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, pp. 477–495. Springer, Heidelberg (1992)Google Scholar
  10. 10.
    Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences 48, 149–182 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kari, J.: Representation of reversible cellular automata with block permutations. Mathematical Systems Theory 29, 47–61 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kari, J.: On the circuit depth of structurally reversible cellular automata. Fundamenta Informatica 38, 93–107 (1999)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kari, J.: Linear Cellular Automata with Multiple State Variables. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 110–121. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Manzini, G., Margara, L.: Invertible Linear Cellular Automata over Zm: Algorithmic and Dynamical Aspects. Journal of Computer and System Sciences 56, 60–67 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Margolus, N.: Physics-like models of computation. Physica D 10, 81–95 (1984)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Moore, E.F.: Machine Models of Self-reproduction. In: Proceedings of the Symposium in Applied Mathematics, vol. 14, pp. 17–33 (1962)Google Scholar
  17. 17.
    Morita, K., Harao, M.: Computation Universality of one.dimensional reversible (injective) cellular automata. IEICE Transactions E72, 758–762 (1989)Google Scholar
  18. 18.
    Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoretical Computer Science 148, 157–163 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Myhill, J.: The Converse to Moore’s Garden-of-Eden Theorem. Proceedings of the American Mathematical Society 14, 685–686 (1963)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Richardson, D.: Tessellations with Local Transformations. Journal of Computer and System Sciences 6, 373–388 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Sato, T.: Decidability of some problems of linear cellular automata over finite commutative rings. Information Processing Letters 46, 151–155 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5, 19–31 (1991)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Toffoli, T.: Computation and construction universality of reversible cellular automata. Journal of Computer and System Sciences 15, 213–231 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Toffoli, T., Margolus, N.: Cellular Automata Machines. MIT Press, Cambridge (1987)Google Scholar
  25. 25.
    Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Physica D 45, 229–253 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jarkko Kari
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of TurkuFinland
  2. 2.Department of Computer ScienceUniversity of IowaIowa CItyUSA

Personalised recommendations