The Power of Tree Series Transducers of Type I and II

  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3572)

Abstract

The power of tree series transducers of type I and II is studied for IO as well as OI tree series substitution. More precisely, it is shown that the IO tree series transformations of type I (respectively, type II) are characterized by the composition of homomorphism top-down IO tree series transformations with bottom-up (respectively, linear bottom-up) IO tree series transformations. On the other hand, polynomial OI tree series transducers of type I and II and top-down OI tree series transducers are equally powerful.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuich, W.: Tree transducers and formal tree series. Acta Cybernet 14, 135–149 (1999)MATHMathSciNetGoogle Scholar
  2. 2.
    Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transformations. J. Autom. Lang. Comb. 7, 11–70 (2002)MATHMathSciNetGoogle Scholar
  3. 3.
    Fülöp, Z., Vogler, H.: Tree series transformations that respect copying. Theory Comput. Syst. 36, 247–293 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoret. Comput. Sci. 18, 115–148 (1982)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kuich, W.: Formal power series over trees. In: Bozapalidis, S. (ed.) Proc. 3rd Int. Conf. Developments in Language Theory, pp. 61–101. Aristotle University of Thessaloniki (1997)Google Scholar
  6. 6.
    Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Comb. 8, 417–463 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    Kuich, W.: Full abstract families of tree series I. In: Karhumäki, J., Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels Are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 145–156. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Engelfriet, J.: Bottom-up and top-down tree transformations – a comparison. Math. Systems Theory 9, 198–231 (1975)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Comb. 8, 219–285 (2003)MATHMathSciNetGoogle Scholar
  10. 10.
    Bozapalidis, S.: Context-free series on trees. Inform. and Comput. 169, 186–229 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Syst. 32, 1–33 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.Fakultät InformatikTechnische Universität DresdenDresdenGermany

Personalised recommendations