Unambiguous Morphic Images of Strings

  • Dominik D. Freydenberger
  • Daniel Reidenbach
  • Johannes C. Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3572)


Motivated by the research on pattern languages, we study a fundamental combinatorial question on morphisms in free semigroups: With regard to any string α over some alphabet we ask for the existence of a morphism σ such that σ(α) is unambiguous, i.e. there is no morphism ρ with \(\rho \not= \sigma\) and ρ(α) = σ(α). Our main result shows that a rich and natural class of strings is provided with unambiguous morphic images.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: [14]Google Scholar
  3. 3.
    Harju, T., Karhumäki, J.: Morphisms. In: [14]Google Scholar
  4. 4.
    Head, T.: Fixed languages and the adult languages of 0L schemes. Intern. J. of. Computer Math. 10, 103–107 (1981)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jürgensen, H., Konstantinidis, S.: Codes. In: [14]Google Scholar
  6. 6.
    Lange, S., Wiehagen, R.: Polynomial-time inference of arbitrary pattern languages. New Generation Comput. 8, 361–370 (1991)MATHCrossRefGoogle Scholar
  7. 7.
    Levé, F., Richomme, G.: On a conjecture about finite fixed points of morphisms. Theor. Comp. Sci. (to appear)Google Scholar
  8. 8.
    Lipponen, M., P˘aun, G.: Strongly prime PCP words. Discrete Appl. Math. 63, 193–197 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  10. 10.
    Mateescu, A., Salomaa, A.: Patterns. In: [14]Google Scholar
  11. 11.
    Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. RAIRO Inform. Théor. Appl. 28(3-4), 233–253 (1994)MATHMathSciNetGoogle Scholar
  12. 12.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theor. Comp. Sci. (to appear)Google Scholar
  13. 13.
    Reidenbach, D.: A discontinuity in pattern inference. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 129–140. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer, Berlin (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dominik D. Freydenberger
    • 1
  • Daniel Reidenbach
    • 1
  • Johannes C. Schneider
    • 1
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations