Unambiguous Morphic Images of Strings

  • Dominik D. Freydenberger
  • Daniel Reidenbach
  • Johannes C. Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3572)


Motivated by the research on pattern languages, we study a fundamental combinatorial question on morphisms in free semigroups: With regard to any string α over some alphabet we ask for the existence of a morphism σ such that σ(α) is unambiguous, i.e. there is no morphism ρ with \(\rho \not= \sigma\) and ρ(α) = σ(α). Our main result shows that a rich and natural class of strings is provided with unambiguous morphic images.


Inductive Inference Natural Class Injective Morphism Pattern Language Free Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: [14]Google Scholar
  3. 3.
    Harju, T., Karhumäki, J.: Morphisms. In: [14]Google Scholar
  4. 4.
    Head, T.: Fixed languages and the adult languages of 0L schemes. Intern. J. of. Computer Math. 10, 103–107 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jürgensen, H., Konstantinidis, S.: Codes. In: [14]Google Scholar
  6. 6.
    Lange, S., Wiehagen, R.: Polynomial-time inference of arbitrary pattern languages. New Generation Comput. 8, 361–370 (1991)zbMATHCrossRefGoogle Scholar
  7. 7.
    Levé, F., Richomme, G.: On a conjecture about finite fixed points of morphisms. Theor. Comp. Sci. (to appear)Google Scholar
  8. 8.
    Lipponen, M., P˘aun, G.: Strongly prime PCP words. Discrete Appl. Math. 63, 193–197 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)zbMATHGoogle Scholar
  10. 10.
    Mateescu, A., Salomaa, A.: Patterns. In: [14]Google Scholar
  11. 11.
    Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. RAIRO Inform. Théor. Appl. 28(3-4), 233–253 (1994)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theor. Comp. Sci. (to appear)Google Scholar
  13. 13.
    Reidenbach, D.: A discontinuity in pattern inference. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 129–140. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer, Berlin (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dominik D. Freydenberger
    • 1
  • Daniel Reidenbach
    • 1
  • Johannes C. Schneider
    • 1
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations