Regional Whole Body Fat Quantification in Mice

  • Xenophon Papademetris
  • Pavel Shkarin
  • Lawrence H. Staib
  • Kevin L. Behar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3565)

Abstract

Obesity has risen to epidemic levels in the United States and around the world. Global indices of obesity such as the body mass index (BMI) have been known to be inaccurate predictors of risk of diabetes, and it is commonly recognized that the distribution of fat in the body is a key measure. In this work, we describe the early development of image analysis methods to quantify regional body fat distribution in groups of both male and female wildtype mice using magnetic resonance images. In particular, we present a new formulation which extends the expectation-maximization formalism commonly applied in brain segmentation to multi-exponential data and applies it to the problem of regional whole body fat quantification. Previous segmentation approaches for multispectral data typically perform the classification on fitted parameters, such as the density and the relaxation times. In contrast, our method directly computes a likelihood term from the raw data and hence explicitly accounts for errors in the fitting process, while still using the fitted parameters to model the variation in the appearance of each tissue class. Early validation results, using magnetic resonance spectroscopic imaging as a gold standard, are encouraging. We also present results demonstrating differences in fat distribution between male and female mice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berryman, D.E., List, E.O., Coschigano, K.T., Behar, K., Kim, J.K., Kopchick, J.J.: Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Hormone & IGF Research 14, 309–318 (2004)CrossRefGoogle Scholar
  2. 2.
    Calle, E.E., Kaak, R.: Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nature Reviews Cancer 4, 579–591 (2004)CrossRefGoogle Scholar
  3. 3.
    Changani, K.K., Nicholson, A., White, A., Latcham, J.K., Reid, D.G., Clapham, J.C.: A longitudinal magnetic resonance imaging (MRI) study of differences in abdominal fat distribution between normal mice and lean overexpressors of mitochondrial uncoupling protein-3 (UPC-3). Diabetes, Obesity and Metabolism 5, 99–105 (2003)CrossRefGoogle Scholar
  4. 4.
    Cline, H.E., Lorensen, W.E., Kikinis, R., Jolesz, F.: Three-dimensional segmentation of MR images of the head using probability and connectivity. Journal of Computer Assisted Tomography 14(6), 1037–1045 (1990)CrossRefGoogle Scholar
  5. 5.
    NIH Obesity-Related Scientific Meetings Conferences and Workshops, http://obesityresearch.nih.gov/news/meetings-archive.htm
  6. 6.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley and Sons, Chichester (1973)MATHGoogle Scholar
  7. 7.
    Evans, D.J., Hoffmann, R.G., Kalkhoff, R.K., Kissebah, A.H.: Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism 33(1), 68–75 (1984)CrossRefGoogle Scholar
  8. 8.
    Geman, D., Geman, S.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)MATHCrossRefGoogle Scholar
  9. 9.
    Grady, D.: The secret life of a potent cell, The New York Times, July 6, vol. 1 (2003)Google Scholar
  10. 10.
    Gronemeyer, S.A., Steen, R.G., Kauffman, W.M., Reddick, W.E., Glass, J.O.: Fast adipose tissue (FAT) assesment by MRI. Magnetic Resonance Imaging 18, 815–818 (2000)CrossRefGoogle Scholar
  11. 11.
    Klein, S., Fontana, L., Young, V., Leroy, C., Andrew, R., Kilo, C., Patterson, B.W., Mohammed, B.S.: Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. New England Journal of Medicine 350(25), 2549–2557 (2004)CrossRefGoogle Scholar
  12. 12.
    Liang, Z., Jaszczak, R.F., Coleman, R.E.: Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing. IEEE Trans. Nucl. Sci. 39(4), 1126–1133 (1992)CrossRefGoogle Scholar
  13. 13.
    Manson, J.E., Colditz, G.A., Stampfer, M.J., Willett, W.C., Rosner, B., Monson, R.R., Speizer, F.E., Hennekens, C.H.: A prospective study of obesity and risk of coronary heart disease in women. N Engl J Med. 322(13), 882 (1990)CrossRefGoogle Scholar
  14. 14.
    Noe, A., Gee, J.C.: Partial volume segmentation of cerebral MRI scans with mixture model clustering. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 423–430. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Ohlson, L.O., Larsson, B., Svardsudd, K., Welin, L., Eriksson, H., Wilhelmsen, L., Bjorntorp, P., Tibblin, G.: The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 34(10), 1055–1058 (1985)CrossRefGoogle Scholar
  16. 16.
    Papademetris, X., Jackowski, A., Schultz, R.T., Staib, L.H., Duncan, J.S.: Integrated intensity and point-feature nonrigid registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 763–770. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Transactions on Medical Imaging 18(9), 737–752 (1999)CrossRefGoogle Scholar
  18. 18.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1994)Google Scholar
  19. 19.
    Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)CrossRefGoogle Scholar
  20. 20.
    Studholme, C., Hill, D., Hawkes, D.: Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimisation of voxel similarity measures. Medical Physics 24(1), 25–35 (1997)CrossRefGoogle Scholar
  21. 21.
    Tsai, Y.-S., Kim, H.-J., Takahashi, N., Kim, H.-S., Hagaman, J., Kim, J.K., Maeda, N.: Hypertension and abnormal fat distribution but not insulin resistance in mice with p465l pparγ. J. Clin. Invest. 114, 240–249 (2004)Google Scholar
  22. 22.
    Weiss, R., Dufour, S., Taksali, S., Tambolrane, W.V., Petersen, K.F., Bonadonna, R.C., Boselli, L., Barbetta, G.: Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance and altered myocellular and abdominal fat partitioning. Lancet 362, 951–957 (2003)CrossRefGoogle Scholar
  23. 23.
    Weiss, R., Taksali, S.E., Dufour, S., Yeckel, C.W., Papademetris, X., Kline, G., Tamborlane, W.V., Dziura, J., Shulman, G.I., Caprio, S.: The Obese Insulin Sensitive adolescent – importance of adiponectin and lipid partitioning. J. Clin Endocrinol. Metab (March 2005)Google Scholar
  24. 24.
    Wells, W.M., Kikinis, R., Grimson, W.E.L., Jolesz, F.: Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging 15, 429–442 (1996)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xenophon Papademetris
    • 1
    • 2
  • Pavel Shkarin
    • 2
  • Lawrence H. Staib
    • 1
    • 2
  • Kevin L. Behar
    • 3
  1. 1.Departments of Biomedical Engineering 
  2. 2.Diag. Radiology 
  3. 3.PsychiatryYale UniversityNew HavenUSA

Personalised recommendations