Cryptographically Significant Boolean Functions: Construction and Analysis in Terms of Algebraic Immunity

  • Deepak Kumar Dalai
  • Kishan Chand Gupta
  • Subhamoy Maitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3557)

Abstract

Algebraic attack has recently become an important tool in cryptanalysing different stream and block cipher systems. A Boolean function, when used in some cryptosystem, should be designed properly to resist this kind of attack. The cryptographic property of a Boolean function, that resists algebraic attack, is known as Algebraic Immunity (\(\mathcal{AI}\)). So far, the attempt in designing Boolean functions with required algebraic immunity was only ad-hoc, i.e., the functions were designed keeping in mind the other cryptographic criteria, and then it has been checked whether it can provide good algebraic immunity too. For the first time, in this paper, we present a construction method to generate Boolean functions on n variables with highest possible algebraic immunity ⌈n / 2⌉ . Such a function can be used in conjunction with (using direct sum) functions having other cryptographic properties.

In a different direction we identify that functions, having low degree subfunctions, are weak in terms of algebraic immunity and analyse some existing constructions from this viewpoint.

Keywords

Algebraic Attacks Algebraic Immunity Annihilators Boolean Functions Correlation Immunity Nonlinearity 

References

  1. 1.
    Armknecht, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Batten, L.M.: Algebraic attacks over gF(q). In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 84–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Botev, A.: On algebraic immunity of some recursively given sequence of correlation immune functions. In: Proceedings of XV international workshop on Synthesis and complexity of control systems, Novosibirsk, October 18-23, pp. 8–12 (2004)(in Russian)Google Scholar
  4. 4.
    Botev, A.: On algebraic immunity of new constructions of filters with high nonlinearity. In: Proceedings of VI international conference on Discrete models in the theory of control systems, Moscow, December 7-11, pp. 227–230 (2004) (in Russian)Google Scholar
  5. 5.
    Botev, A., Tarannikov, Y.: Lower bounds on algebraic immunity for recursive constructions of nonlinear filters (2004) (Preprint)Google Scholar
  6. 6.
    Carlet, C.: A larger class of cryptographic boolean functions via a study of the maiorana-mcFarland construction. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 549–564. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Carlet, C.: Improving the algebraic immunity of resilient and nonlinear functions and constructing bent functions. IACR ePrint server 2004/276, http://eprint.iacr.org
  8. 8.
    Carlet, C.: Concatenating indicators of flats for designing cryptographic functions. To appear in Design, Codes and CryptographyGoogle Scholar
  9. 9.
    Carlet, C.: Personal communications (2005)Google Scholar
  10. 10.
    Cheon, J.H., Lee, D.-H.: Resistance of S-boxes against algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 83–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Cho, J.Y., Pieprzyk, J.: Algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 49–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Results on algebraic immunity for cryptographically significant boolean functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. In: Ding, C., Shan, W., Xiao, G. (eds.) The Stability Theory of Stream Ciphers. LNCS. vol. 561, Springer, Heidelberg (1991)Google Scholar
  17. 17.
    Lee, D.-H., Kim, J.H., Hong, J., Han, J.W., Moon, D.: Algebraic attacks on summation generators. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 34–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient and correlation immune Boolean functions achieving upper bounds on nonlinearity. In: Workshop on Coding and Cryptography - WCC 2001, Paris, January 8–12. Electronic Notes in Discrete Mathematics, vol. 6. Elsevier Science, Amsterdam (2001)Google Scholar
  20. 20.
    Sarkar, P., Maitra, S.: Construction of nonlinear boolean functions with important cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Tarannikov, Y.V.: On resilient boolean functions with maximal possible nonlinearity. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 19–30. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Deepak Kumar Dalai
    • 1
  • Kishan Chand Gupta
    • 1
  • Subhamoy Maitra
    • 1
  1. 1.Applied Statistics UnitIndian Statistical InstituteCalcuttaIndia

Personalised recommendations