Related-Key Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192

  • Seokhie Hong
  • Jongsung Kim
  • Sangjin Lee
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3557)

Abstract

In this paper we propose a notion of related-key rectangle attack using 4 related keys. It is based on two consecutive related-key differentials which are independent of each other. Using this attack we can break SHACAL-1 with 512-bit keys up to 70 rounds out of 80 rounds and AES with 192-bit keys up to 8 rounds out of 12 rounds, which are faster than exhaustive search.

References

  1. 1.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: Rectangle attacks on 49-round SHACAL-1. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 22–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Blunden, M., Escott, A.: Related key attacks on reduced round KASUMI. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 277–285. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)MATHGoogle Scholar
  8. 8.
    Ferguson, N., Kelsey, J., Schneier, B., Stay, M., Wagner, D., Whiting, D.L.: Improved cryptanalysis of rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Handschuh, H., Naccache, D.: SHACAL. In: Proceedings of NESSIE first workshop, Leuven (2000)Google Scholar
  10. 10.
    Hawkes, P.: Differential-linear weak key classes of IDEA. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key AES Variants. In: Proceedings of Selected Areas in Cryptography 2003. LNCS, vol. 3006, pp. 208–221. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kelsey, J., Schneier, B., Wagner, D.: Key-schedule cryptanalysis of IDEA, G-DES, GOST, SAFER, and triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Kelsey, J., Schneir, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Proceedings of International Conference on Information and Communications Seucrity 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack – application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Kim, J., Kim, G., Lee, S., Lim, J., Song, J.: Related-key attacks on reduced rounds of SHACAL-2. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 175–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified boomerang attack against reduced-round SHACAL. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 243–253. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Knudsen, L.R.: Trucated and Higher Order Differentials. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 196–211. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    US Department of Commerce. FIPS 180-1: Secure Hash Standard, Federal Information Processing Standards Publication, N.I.S.T. (April 1995)Google Scholar
  20. 20.
    Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)Google Scholar
  21. 21.
    Lucks, S.: Attacking seven rounds of Rijndael under 192-bit and 256-bit keys, Proceedings of AES3, NISTGoogle Scholar
  22. 22.
    Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.: Related key differential attacks on 27 rounds of XTEA and full-round GOST. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Seokhie Hong
    • 1
  • Jongsung Kim
    • 2
  • Sangjin Lee
    • 2
  • Bart Preneel
    • 1
  1. 1.Katholieke Universiteit Leuven, ESAT/SCD-COSICLeuven-HeverleeBelgium
  2. 2.Center for Information Security Technologies(CIST)Korea UniversitySeoulKorea

Personalised recommendations