Database-Centric Programming for Wide-Area Sensor Systems

  • Shimin Chen
  • Phillip B. Gibbons
  • Suman Nath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3560)

Abstract

A wide-area sensor system is a complex, dynamic, resource-rich collection of Internet-connected sensing devices. In this paper, we propose X-Tree Programming, a novel database-centric programming model for wide-area sensor systems designed to achieve the seemingly conflicting goals of expressiveness, ease of programming, and efficient distributed execution. To demonstrate the effectiveness of X-Tree Programming in achieving these goals, we have incorporated the model into IrisNet, a shared infrastructure for wide-area sensing, and developed several widely different applications, including a distributed infrastructure monitor running on 473 machines worldwide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IrisLog: A Structured, Distributed Syslog, http://www.intel-iris.net/irislog
  2. 2.
    IrisNet (Internet-scale Resource-Intensive Sensor Network Service), http://www.intel-iris.net/
  3. 3.
  4. 4.
    Bancilhon, F., Briggs, T., Khoshafian, S., Valduriez, P.: FAD, a powerful and simple database language. In: Proc. of VLDB 1987 (1987)Google Scholar
  5. 5.
    Blelloch, G.E.: Scans as primitive parallel operations. ACM Transaction on Computers C-38(11) (1989)Google Scholar
  6. 6.
    Bonnet, P., Gehrke, J.E., Seshadri, P.: Towards sensor database systems. In: Proc. of IEEE Mobile Data Management (2001)Google Scholar
  7. 7.
    Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query system for Internet databases. In: Proc. of SIGMOD (2000)Google Scholar
  8. 8.
    Chen, S., Gibbons, P.B., Nath, S.: Database-centric programming for wide-area sensor systems. Technical Report IRP-TR-05-02, Intel Research Pittsburgh (April 2005)Google Scholar
  9. 9.
    Chun, B.: PlanetLab researcher and administrator. Personal communication (November 2003), http://berkeley.intel-research.net/bnc/
  10. 10.
    Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proc. of OSDI (2004)Google Scholar
  11. 11.
    Deshpande, A., Nath, S.K., Gibbons, P.B., Seshan, S.: Cache-and-query for wide area sensor databases. In: Proc. of SIGMOD 2003 (2003)Google Scholar
  12. 12.
    Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O., Edakkunni, A., Hong, W.: Design considerations for high fan-in systems: The HiFi approach. In: Proc. of CIDR 2005 (2005)Google Scholar
  13. 13.
    Gibbons, P.B., Karp, B., Ke, Y., Nath, S., Seshan, S.: Irisnet: An architecture for a worldwide sensor web. IEEE Pervasive Computing 2(4) (2003)Google Scholar
  14. 14.
    Hellerstein, J.M., Hong, C.-M., Madden, S., Stanek, K.: Beyond average: Toward sophisticated sensing with queries. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 63–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Kumar, P.R.: Information processing, architecture, and abstractions in sensor networks. In: Invited talk, SenSys 2004 (2004)Google Scholar
  16. 16.
    Kurose, J.: Collaborative adaptive sensing of the atmosphere. In: Invited talk SenSys 2004 (2004)Google Scholar
  17. 17.
    Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. of the ACM 27(4) (1980)Google Scholar
  18. 18.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation service for ad-hoc sensor networks. In: Proc. of OSDI 2002 (2002)Google Scholar
  19. 19.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proc. of SIGMOD 2003 (2003)Google Scholar
  20. 20.
    Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous queries over streams. In: Proc. of SIGMOD 2002 (2002)Google Scholar
  21. 21.
    Mainland, G., Kang, L., Lahaie, S., Parkes, D.C., Welsh, M.: Using virtual markets to program global behavior in sensor networks. In: Proc. of ACM SIGOPS European Workshop (2004)Google Scholar
  22. 22.
    Newton, R., Welsh, M.: Region streams: Functional macroprogramming for sensor networks. In: Proc. of ACM Workshop on Data Management for Sensor Networks (2004)Google Scholar
  23. 23.
    Rhea, S., Kubiatowicz, J.: Probabilistic location and routing. In: Proc. of INFOCOM 2002 (2002)Google Scholar
  24. 24.
    Roscoe, T., Peterson, L., Karlin, S., Wawrzoniak, M.: A simple common sensor interface for PlanetLab. PlanetLab Design Notes PDN-03-010 (2003)Google Scholar
  25. 25.
    Stonebraker, M., Anton, J., Hanson, E.N.: Extending a database system with procedures. ACM Transactions on Database Systems 12(3) (1987)Google Scholar
  26. 26.
    Suciu, D.: Distributed query evaluation on semistructured data. ACM Transactions on Database Systems 27(1) (2002)Google Scholar
  27. 27.
    Terry, D.B., Goldberg, D., Nichols, D., Oki, B.M.: Continuous queries over append-only databases. In: Proc. of SIGMOD 1992(1992)Google Scholar
  28. 28.
    van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining. ACM Transactions on Computer Systems 21(2) (2003)Google Scholar
  29. 29.
    Wawrzoniak, M., Peterson, L., Roscoe, T.: Sophia: An information plane for networked systems. In: Proc. of Hotnets-II (2003)Google Scholar
  30. 30.
    Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In: Proc. of NSDI 2004 (2004)Google Scholar
  31. 31.
    Yalagandula, P., Dahlin, M.: A scalable distributed information management system. In: Proc. of Sigcomm 2004 (2004)Google Scholar
  32. 32.
    Yao, Y., Gehrke, J.: Query processing in sensor networks. In: Proc.of CIDR 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shimin Chen
    • 1
  • Phillip B. Gibbons
    • 2
  • Suman Nath
    • 1
    • 2
  1. 1.Carnegie Mellon University 
  2. 2.Intel Research Pittsburgh 

Personalised recommendations