Advertisement

Information Management in Distributed Healthcare Networks

  • Richard Lenz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3551)

Abstract

Providing healthcare increasingly changes from isolated treatment episodes towards a continuous treatment process involving multiple healthcare professionals and various institutions. Information management plays a crucial role in this interdisciplinary process. By using information technology (IT) different goals are in the focus: To decrease overall costs for healthcare, to improve healthcare quality, and to consolidate patient-related information from different sources.

Consolidation of patient data is ultimately aimed at a lifetime patient record which serves as the basis for healthcare processes involving multiple healthcare professionals and different institutions. To enable seamless integration of various kinds of IT applications into a healthcare network, a commonly accepted framework is needed. Powerful standards and middleware technology are already at hand to develop a technical and syntactical infrastructure for such a framework. Yet, semantic heterogeneity is a limiting factor for system interoperability. Existing standards do support semantic interoperability of healthcare IT systems to some degree, but standards alone are not sufficient to support an evidence-based cooperative patient treatment process across organizational borders.

Medicine is a rapidly evolving scientific domain, and medical experts are developing and consenting new guidelines as new evidence occurs. Unfortunately, there is a gap between guideline development and guideline usage at the point of care. Medical treatment today is still characterized by a large diversity of different opinions and treatment plans. Medical pathways and reminder systems are an attempt to reduce the diversity in medical treatment and to bring evidence to the point of care. Developing such pathways, however, is primarily a process of achieving consensus between the participating healthcare professionals. IT support for pathways thus requires a responsive IT infrastructure enabling a demand-driven system evolution.

This article describes modern approaches for “integrated care” as well as the major challenges that are yet to be solved to adequately support distributed healthcare networks with IT services.

Keywords

Electronic Health Record Unify Medical Language System Clinical Document Architecture Healthcare Process Healthcare Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services—Concepts, Architectures and Applications. Springer, Berlin (2003)Google Scholar
  2. 2.
    Bange, C.: Von ETL zur Datenintegration. IT Fokus 3(4), 12–16 (2004)Google Scholar
  3. 3.
    Bates, D.W., Kuperman, G.J., Wang, S., Gandhi, T., Kittler, A., Volk, L., et al.: Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 10(6), 523–530 (2003)CrossRefGoogle Scholar
  4. 4.
    Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies for Database Schema Integration. ACM Computing Surveys 18(4), 323–364 (1986)CrossRefGoogle Scholar
  5. 5.
    Beale, T.: Archetypes: Constraint-based Domain Models for Future-proof Information Systems. In: OOPSLA 2002 workshop on behavioural semantics (2002)Google Scholar
  6. 6.
    Beale, T.: Archetypes and the EHR. Stud Health Technol. Inform 96, 238–244 (2003)Google Scholar
  7. 7.
    Berger, R.: Telematik im Gesundheitswesen – Perspektiven der Telemedizin in Deutschland. München: Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie und Bundesministerium für Gesundheit (1997)Google Scholar
  8. 8.
    Beyer, M., Kuhn, K.A., Meiler, C., Jablonski, S., Lenz, R.: Towards a flexible, process-oriented IT architecture for an integrated healthcare network. In: Proceedings of the 2004 ACM Symposium on Applied Computing (SAC), pp. 264–271. ACM, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Bhasale, A.L., Miller, G.C., Reid, S.E., Britt, H.C.: Analysing potential harm in Australian general practice: an incident-monitoring study. Med. J. Aust. 169(2), 73–76 (1998)Google Scholar
  10. 10.
    Bidgood, W.D., Horii, S.C., Prior, F.W., Van Syckle, D.E.: Understanding and Using DICOM, the Data Interchange Standard for Biomedical Imaging. Journal of the American Medical Informatics Association 4(3), 199–212 (1997)CrossRefGoogle Scholar
  11. 11.
    Bouguettaya, A., Benatallah, B., Elmagarmid, A.: Interconnecting Heterogeneous Information Systems. Kluwer Academic Publishers, Boston (1998)Google Scholar
  12. 12.
    Brennan, T.A., Leape, L.L.: Adverse events, negligence in hospitalized patients: results from the Harvard Medical Practice Study. Perspect Healthc Risk Manage 11(2), 2–8 (1991)CrossRefGoogle Scholar
  13. 13.
    Brennan, T.A., Leape, L.L., Laird, N.M., Hebert, L., Localio, A.R., Lawthers, A.G., et al.: Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N Engl. J. Med. 324(6), 370–376 (1991)Google Scholar
  14. 14.
    Cimino, J.J.: From data to knowledge through concept-oriented terminologies: experience with the Medical Entities Dictionary. J. Am. Med. Inform. Assoc. 7(3), 288–297 (2000)CrossRefGoogle Scholar
  15. 15.
    Committee on Quality of Health Care in America IoM. Crossing the Quality Chasm: A New Health System for the 21st Century. IOM (2001)Google Scholar
  16. 16.
    Conrad, S.: Schemaintegration – Integrationskonflikte, Lösungsansätze, aktuelle Herausforderungen. Informatik – Forschung und Entwicklung 17(3), 101–111 (2002)CrossRefGoogle Scholar
  17. 17.
    de Clercq, P.A., Blom, J.A., Korsten, H.H., Hasman, A.: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif. Intell. Med. 31(1), 1–27 (2004)CrossRefGoogle Scholar
  18. 18.
    Dick, R.S., Steen, E.B.: The Computer-Based Patient Record: An Essential Technology for Health Care, 2nd edn. National Academy Press, Washington (1997)Google Scholar
  19. 19.
    Elmagarmid, A., Rusinkiewicz, M., Sheth, A. (eds.): Management of Heterogeneous and Autonomous Database Systems. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  20. 20.
    Fayad, M., Johnson, R.: Domain-specific application frameworks frameworks experience by industry. John Wiley, New York (2000)Google Scholar
  21. 21.
    Forman, B.H., Cimino, J.J., Johnson, S.B., Sengupta, S., Sideli, R., Clayton, P.: Applying a controlled medical terminology to a distributed, production clinical information system. In: Proc. Annu.Symp. Comput. Appl. Med. Care, pp. 421–425 (1995)Google Scholar
  22. 22.
    Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma approach. Artif. Intell. Med. 14(1-2), 157–181 (1998)CrossRefGoogle Scholar
  23. 23.
    Gross, P.A., Greenfield, S., Cretin, S., Ferguson, J., Grimshaw, J., Grol, R., et al.: Optimal methods for guideline implementation: conclusions from Leeds Castle meeting. Med. Care 39 (8 Suppl. 2), II85–II92 (2001)Google Scholar
  24. 24.
    Haux, R., Ammenwerth, E., Herzog, W., Knaup, P.: Gesundheitsversorgung in der Informationsgesellschaft – eine Prognose für das Jahr 2013. Informatik – Biometrie und Epidemiologie in Medizin und Biologie 35(3), 138–163 (2004)Google Scholar
  25. 25.
    Härder, T.: Realisierung von operationalen Schnittstellen. In: Lockemann, P.C., Schmidt, J.W. (eds.) Datenbank-Handbuch, Springer, Berlin (1987)Google Scholar
  26. 26.
    Härder, T., Hergula, K.: Ankopplung heterogener Anwendungssysteme an Föderierte Datenbanksysteme durch Funktionsintegration. Informatik – Forschung und Entwicklung 17(3), 135–148 (2002)CrossRefGoogle Scholar
  27. 27.
    Heiler, S.: Semantic Interoperability. ACM Computing Surveys 27(2), 271–273 (1995)CrossRefGoogle Scholar
  28. 28.
    Huff, S.M., Bidgood Jr., W.D., Cimino, J.J., Hammond, W.E.: A proposal for incorporating Health level seven (HL7) vocabulary in the UMLS Metathesaurus. In: Proc. Amia. Symp., pp. 800–804 (1998)Google Scholar
  29. 29.
    ID GmbH. ID MACS – Das semantische Netz. 2004. Berlin, ID – Gesellschaft für Information und Dokumentation im Gesundheitswesen mbH, http://www.id-berlin.de/deu/_2produkte/macs.php
  30. 30.
    Jenders, R.A., Hripcsak, G., Sideli, R.V., DuMouchel, W., Zhang, H., Cimino, J.J., et al.: Medical decision support: experience with implementing the Arden Syntax at the Columbia-Presbyterian Medical Center. In: Proc. Annu. Symp. Comput. Appl. Med. Care, pp. 169–173 (1995)Google Scholar
  31. 31.
    Kim, W., Seo, J.: Classifying Schematic and Data Heterogeneity in Multidatabase Systems. IEEE Computer 24(12), 12–18 (1991)Google Scholar
  32. 32.
    Kohn, L.T., Corrigan, J.M., Donaldson, M.: To Err Is Human. Building a Safer Health System. National Academy Press, Washington (2000)Google Scholar
  33. 33.
    Lenz, R., Huff, S., Geissbühler, A.: Report of conference track 2: pathways to open architectures. Int. J. Med. Inf. 69(2-3), 297–299 (2003)CrossRefGoogle Scholar
  34. 34.
    Lenz, R., Kuhn, K.A.: Towards a Continuous Evolution and Adaptation of Information Systems in Healthcare. Int. J. Med. Inf. 73(1), 75–89 (2004)CrossRefGoogle Scholar
  35. 35.
    Lenz, R., Kuhn, K.A.: Intranet meets hospital information systems: the solution to the integration problem? Methods Inf. Med. 40(2), 99–105 (2001)Google Scholar
  36. 36.
    Luftman, J.N., Papp, R., Brier, T.: Enablers and Inhibitors of Business-IT Alignment. Communications of the Association for Information Systems 1(11) (1999)Google Scholar
  37. 37.
    Lenz, R., Kuhn, K.A.: Zur Architektur und Evolution von Krankenhausinformationssystemen. In: Dittrich, K., König, W., Oberweis, A., Rannenberg, K., Wahlster, W. (eds.) Informatik 2003 – Innovative Informatikanwendungen, Beiträge der 33.Jahrestagung der Gesellschaft für Informatik e.V(GI), 2nd edn. pp. 435–444 (2003)Google Scholar
  38. 38.
    Maviglia, S.M., Zielstorff, R.D., Paterno, M., Teich, J.M., Bates, D.W., Kuperman, G.J.: Automating complex guidelines for chronic disease: lessons learned. J. Am. Med. Inform Assoc. 10(2), 154–165 (2003)CrossRefGoogle Scholar
  39. 39.
    McDonald, C.J., Hui, S.L., Smith, D.M., Tierney, W.M., Cohen, S.J., Weinberger, M., et al.: Reminders to physicians from an introspective computer medical record. A two-year randomized trial. Ann. Intern. Med. 100(1), 130–138 (1984)Google Scholar
  40. 40.
    Musen, M., Shahar, Y., Shortliffe, E.H.: Clinical decision support systems. In: Shortliffe, E.H., Perreault, L.E., Wiederhold, G., Fagan, L.M. (eds.), pp. 573–609. Springer, New York (2000)Google Scholar
  41. 41.
    Musen, M.A.: Domain ontologies in software engineering: use of Protege with the EON architecture. Methods Inf. Med. 37(4-5), 540–550 (1998)Google Scholar
  42. 42.
    Ohno-Machado, L., Gennari, J.H., Murphy, S.N., Jain, N.L., Tu, S.W., Oliver, D.E., et al.: The guideline interchange format: a model for representing guidelines. J. Am. Med. Inform. Assoc. 5(4), 357–372 (1998)CrossRefGoogle Scholar
  43. 43.
    Patel, N.: Adaptive Evolutionary Information Systems. Idea Group Publishing, London (2003)Google Scholar
  44. 44.
    Peleg, M., Boxwala, A.A., Ogunyemi, O., Zeng, Q., Tu, S., Lacson, R., et al.: GLIF3: the evolution of a guideline representation format. In: Proc. Amia. Symp. pp. 645–649 (2000)Google Scholar
  45. 45.
    Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., et al.: Comparing computer-interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assoc. 10(1), 52–68 (2003)CrossRefGoogle Scholar
  46. 46.
    Pille, B.T., Antczak, R.K.: Application Integration. In: Ball, M.J., Douglas, J.V. (eds.) Performance Improvement Through Information Management, pp. 144–152. Springer, New York (1999)Google Scholar
  47. 47.
    Pryor, T.A., Hripcsak, G.: Sharing MLM’s: an experiment between Columbia-Presbyterian and LDS Hospital. In: Proc. Annu. Symp. Comput. Appl. Med. Care, pp. 399–403 (1993)Google Scholar
  48. 48.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  49. 49.
    Rector, A.L., Nowlan, W.A.: The GALEN project. Comput Methods Programs Biomed. 45(1-2), 75–78 (1994)CrossRefGoogle Scholar
  50. 50.
    Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in the GALEN project. In: Proc. Annu. Symp. Comput. Appl. Med. Care, pp. 414–418 (1993)Google Scholar
  51. 51.
    Rocha, R.A., Huff, S.M.: Coupling vocabularies and data structures: lessons from LOINC. In: Proc. AMIA. Annu. Fall. Symp.pp. 90–94 (1996)Google Scholar
  52. 52.
    Schriefer, J.: The synergy of pathways and algorithms: two tools work better than one. Jt. Comm. J. Qual. Improv. 20(9), 485–499 (1994)Google Scholar
  53. 53.
    Seliger, R.: Overview of HL7’s CCOW Standard, Health Level Seven, Inc. (2001), http://www.hl7.org/library/committees/sigvi/ccow_overview_2001.doc
  54. 54.
    Sheth, A., Larsen, J.: Federated Database Systems for Managing Distributed, Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22(3), 183–235 (1990)CrossRefGoogle Scholar
  55. 55.
    Shiffman, R.N., Liaw, Y., Brandt, C.A., Corb, G.J.: Computer-based guideline implementation systems: a systematic review of functionality and effectiveness. J. Am. Med. Inform. Assoc. 6(2), 104–114 (1999)CrossRefGoogle Scholar
  56. 56.
    Shiffman, R.N., Michel, G., Essaihi, A., Thornquist, E.: Bridging the guideline implementation gap: a systematic, document-centered approach to guideline implementation. J. Am. Med. Inform. Assoc. 11(5), 418–426 (2004)CrossRefGoogle Scholar
  57. 57.
    Stonebraker, M.: Integrating islands of information. EAI Journal, 1–5 (September/October1999)Google Scholar
  58. 58.
    Tan, F.B., Gallupe, R.B.: A framework for research into business-IT alignment: a cognitive emphasis. In: Kangas, K. (ed.) Business strategies for information technology management, pp. 50–73. Idea Group Publishing, Hershey (2003)Google Scholar
  59. 59.
    Tanenbaum, A.S.: Computer networks, 2nd edn. Prentice-Hall, Englewood Cliffs (1988)Google Scholar
  60. 60.
    van Bemmel, J.H., Musen, M.A. (eds.): Handbook of Medical Informatics. Springer, Heidelberg (1997)Google Scholar
  61. 61.
    Vegoda, P.: Introducing the IHE (Integrating the Healthcare Enterprise) concept. J. Healthc. Inf. Manag. 16(1), 22–24 (2002)Google Scholar
  62. 62.
    Vincent, C., Neale, G., Woloshynowych, M.: Adverse events in British hospitals: preliminary retrospective record review. BMJ 322(7285), 517–519 (2001)CrossRefGoogle Scholar
  63. 63.
    Weed, L.L.: Medical records that guide and teach. The New England Journal of Medicine 278(12), 652–657 (1968)CrossRefGoogle Scholar
  64. 64.
    Wilson, R.M., Harrison, B.T., Gibberd, R.W., Hamilton, J.D.: An analysis of the causes of adverse events from the Quality in Australian Health Care Study. Med. J. Aust. 170(9), 411–415 (1999)Google Scholar
  65. 65.
    Wilson, R.M., Runciman, W.B., Gibberd, R.W., Harrison, B.T., Newby, L., Hamilton, J.D.: The Quality in Australian Health Care Study. Med. J. Aust. 163(9), 458–471 (1995)Google Scholar
  66. 66.
    Wingert, F.: SNOMED-Manual. Springer, Heidelberg (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Richard Lenz
    • 1
  1. 1.University of Marburg 

Personalised recommendations