Advertisement

Memetic Algorithms with Partial Lamarckism for the Shortest Common Supersequence Problem

  • Carlos Cotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3562)

Abstract

The Shortest Common Supersequence problem is a hard combinatorial optimization problem with numerous practical applications. We consider the use of memetic algorithms (MAs) for solving this problem. A specialized local-improvement operator based on character removal and heuristic repairing plays a central role in the MA. The tradeoff between the improvement achieved by this operator and its computational cost is analyzed. Empirical results indicate that strategies based on partial lamarckism (i.e., moderate use of the improvement operator) are slightly superior to full-lamarckism and no-lamarckism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H., Downey, R., Fellows, M., Wareham, H.: The parameterized complexity of sequence alignment and consensus. Theoretical Computer Science 147, 31–54 (1994)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Middendorf, M.: More on the complexity of common superstring and supersequence problems. Theoretical Computer Science 125, 205–228 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences 67, 757–771 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Foulser, D., Li, M., Yang, Q.: Theory and algorithms for plan merging. Artificial Intelligence 57, 143–181 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Timkovsky, V.: Complexity of common subsequence and supersequence problems and related problems. Cybernetics 25, 565–580 (1990)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hallet, M.: An integrated complexity analysis of problems from computational biology. PhD thesis, University of Victoria (1996)Google Scholar
  7. 7.
    Branke, J., Middendorf, M., Schneider, F.: Improved heuristics and a genetic algorithm for finding short supersequences. OR-Spektrum 20, 39–45 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rahmann, S.: The shortest common supersequence problem in a microarray production setting. Bioinformatics 19, ii156–ii161(2003)CrossRefGoogle Scholar
  9. 9.
    Branke, J., Middendorf, M.: Searching for shortest common supersequences by means of a heuristic based genetic algorithm. In: Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications, pp. 105–114. Finnish Artificial Intelligence Society (1996)Google Scholar
  10. 10.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  11. 11.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 313–324. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73, 125–129 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cotta, C., Fernández, A.: A hybrid GRASP-evolutionary algorithm approach to golomb ruler search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 481–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Lehmann, E.L.: Nonparametric Statistical Methods Based on Ranks. McGraw-Hill, New York (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Carlos Cotta
    • 1
  1. 1.Dept. Lenguajes y Ciencias de la Computación, ETSI InformáticaUniversity of MálagaMálagaSpain

Personalised recommendations