Computerized Adaptive Tests and Item Response Theory on a Distance Education Platform

  • Pedro Salcedo
  • M. Angélica Pinninghoff
  • Ricardo Contreras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3562)

Abstract

This article presents how Computerized Adaptive Tests and Item Response Theory are modified for using in a Distance Education Platform, MISTRAL, showing the advantages of using this technique, the way in which the knowledge acquisition is accomplished, how it links to student profile and how the students and materials are evaluated.

Keywords

Distance Education Platform Computerized Adaptive Tests Item Response Theory Adaptive Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. In: Brusilovsky, P., Kobsa, A., Vassileva, J. (eds.) Adaptive Hypertext and Hypermedia, pp. 1–43. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  2. 2.
    Danielson, C., Abrutyn, L.: An Introduction to Using Portfolios in the Classroom, Alexandria, Virginia. Association for Supervision and Curriculum Development (1997)Google Scholar
  3. 3.
    Kolb, D., Rubin, I., McIntyre, J.: Organizational Psychology. Prentice Hall, Englewood Cliffs (1984)Google Scholar
  4. 4.
    Lord, F.M.: Some test theory for tailored testing. In: Holtzman, W.H. (ed.) Computer assisted instruction, testing and guidance, pp. 139–183. Harper and Row, New York (1970)Google Scholar
  5. 5.
    Martínez, R.A.: Psicometría: Teoría de los Tests Psicológicos y Educativos. Editorial Síntesis S.A., Madrid (1996)Google Scholar
  6. 6.
    Millán, E., Muñoz, A., Pérez, J.L., Triguero, F.: GITE: Intelligent generation of tests, in Lecture Notes in Computer Science. In: Diaz de Ilarraza Sanchez, A., Fernandez de Castro, I. (eds.) CALISCE 1996. LNCS, vol. 1108, Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Millán, E., Pérez, J.L., Triguero, F.: Using bayesian networks to build and handle the student model in exercise based domains. In: Glesner, M., Hartenstein, R.W. (eds.) FPL 1996. LNCS, vol. 1142. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Pearl, J.: Probabilistic Reasoning in Expert Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Francisco (1988)Google Scholar
  9. 9.
    Salcedo, P., Labraña, C., Farran, Y.: Una plataforma inteligente de educación a distancia que incorpora la adaptabilidad de estrategias de enseñanza al perfil, estilos de aprendizaje y conocimiento de los alumnos. In: XXVIII Latin-American Conference on Informatics (CLEI 2002), Uruguay, November 25-29 (2002)Google Scholar
  10. 10.
    Salcedo, P., Farran, Y., Mardones, E.: MISTRAL: An Intelligent platform for distance education incorporating teaching strategies which adapt to students learning styles. In: World Conference on e-learning in Corporate, Government, Healthcare and Higher Education (2002)Google Scholar
  11. 11.
    Salcedo, P., Pinninghoff, M.A., Contreras, R.: MISTRAL: A Knowledge-Based System for Distance Education that Incorporates Neural Networks Techniques for Teaching Decisions. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pedro Salcedo
    • 1
  • M. Angélica Pinninghoff
    • 1
  • Ricardo Contreras
    • 1
  1. 1.Research and Educational Informatics Department, Informatics Engineering and Computer Science DepartmentUniversidad de ConcepciónChile

Personalised recommendations