Application of Machine Learning Techniques for Simplifying the Association Problem in a Video Surveillance System

  • Blanca Rodríguez
  • Óscar Pérez
  • Jesús García
  • José M. Molina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3562)

Abstract

This paper presents the application of machine learning techniques for acquiring new knowledge in the image tracking process, specifically, in the blobs detection problem, with the objective of improving performance. Data Mining has been applied to the lowest level in the tracking system: blob extraction and detection, in order to decide whether detected blobs correspond to real targets or not. A performance evaluation function has been applied to assess the video surveillance system, with and without Data Mining Filter, and results have been compared.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, San Francisco (2000)Google Scholar
  2. 2.
    Rosin, P.L., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern Recognition Letters 24(14), 2345–2356 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Pérez, O., García, J., Berlanga, A., Molina, J.M.: Evolving Parameters of Surveillance Video Systems for Non-Overfitted LearninG. In: 7th European Workshop on Evolutionary Computation in Image Analysis and Signal Processing (EvoIASP), Lausanne, Suiza (2005)Google Scholar
  4. 4.
    Besada, J.A., Portillo, J., García, J., Molina, J.M., Varona, A., Gonzalez, G.: Airport surface surveillance based on video images. In: FUSION 2001 Conference, Montreal, Canada (2001)Google Scholar
  5. 5.
    Besada, J.A., Portillo, J., García, J., Molina, J.M.: Image-Based Automatic Surveillance for Airport Surface. In: FUSION 2001 Conference, Montreal, Canada (2001)Google Scholar
  6. 6.
    Besada, J.A., Molina, J.M., García, J., Berlanga, A., Portillo, J.: Aircraft Identification integrated in an Airport Surface Surveillance Video System. Machine Vision and Applications 15(3) (2004)Google Scholar
  7. 7.
    Sanka, M., Hlavac, V., Bolye, R.: Image Processing, Analysis and Machine Vision. Brooks/Cole Publishing Company, Monterey (1999)Google Scholar
  8. 8.
    Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  9. 9.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1 (1986)Google Scholar
  10. 10.
    Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  11. 11.
    Canny, J.: A Computational Approach To Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 679–714 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Blanca Rodríguez
    • 1
  • Óscar Pérez
    • 1
  • Jesús García
    • 1
  • José M. Molina
    • 1
  1. 1.Departamento de InformáticaUniversidad Carlos III de MadridMadridSpain

Personalised recommendations