Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification

  • Jakob Puchinger
  • Günther R. Raidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3562)


In this survey we discuss different state-of-the-art approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems. Some of these hybrids mainly aim at providing optimal solutions in shorter time, while others primarily focus on getting better heuristic solutions. The two main categories in which we divide the approaches are collaborative versus integrative combinations. We further classify the different techniques in a hierarchical way. Altogether, the surveyed work on combinations of exact algorithms and metaheuristics documents the usefulness and strong potential of this research direction.


Local Search Exact Algorithm Column Generation Memetic Algorithm Variable Neighborhood Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123(1-3), 75–102 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of the traveling salesman problem. Documenta Mathematica Extra Volume ICM III, 645–656 (1998)Google Scholar
  3. 3.
    Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, New York (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Burke, E.K., Cowling, P.I., Keuthen, R.: Effective local and guided variable neighborhood search methods for the asymmetric travelling salesman problem. In: Boers, E., et al. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 203–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Chen, S., Talukdar, S., Sadeh, N.: Job-shop-scheduling by a team of asynchronous agents. In: IJCAI 1993 Workshop on Knowledge-Based Production, Scheduling and Control, Chambery, France (1993)Google Scholar
  6. 6.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4, 63–86 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Clements, D., Crawford, J., Joslin, D., Nemhauser, G., Puttlitz, M., Savelsbergh, M.: Heuristic optimization: A hybrid AI/OR approach (In conjunction with the Third International Conference on Principles and Practice of Constraint Programming (CP97)). In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Congram, R.K.: Polynomially Searchable Exponential Neighbourhoods for Sequencing Problems in Combinatorial Optimisation. PhD thesis, University of Southampton, Faculty of Mathematical Studies, UK (2000)Google Scholar
  9. 9.
    Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18, 137–153 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighbourhoods to improve MIP solutions. Technical report, ILOG (2003)Google Scholar
  11. 11.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)zbMATHGoogle Scholar
  12. 12.
    Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC), IEEE Press, Los Alamitos (1999)Google Scholar
  13. 13.
    Dumitrescu, I., Stuetzle, T.: Combinations of local search and exact algorithms. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 211–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Filho, G.R., Lorena, L.A.N.: Constructive genetic algorithm and column generation: an application to graph coloring. In: Proceedings of APORS 2000 - The Fifth Conference of the Association of Asian-Pacific Operations Research Societies within IFORS (2000)Google Scholar
  15. 15.
    Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming Series B 98, 23–47 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    French, A.P., Robinson, A.C., Wilson, J.M.: Using a hybrid genetic-algorithm/branch and bound approach to solve feasibility and optimization integer programming problems. Journal of Heuristics 7, 551–564 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Glover, F., Kochenberger, G.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57. Kluwer Academic Publishers, Dordrecht (2003)zbMATHGoogle Scholar
  18. 18.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  19. 19.
    Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39(3), 653–684 (2000)Google Scholar
  20. 20.
    Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-heuristics: advances and trends in local search paradigms for optimization, pp. 433–438. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  21. 21.
    Kirkpatrick, S., Gellat, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Klau, G., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl, G., Weiskircher, R.: Combining a memetic algorithm with integer programming to solve the prize-collecting Steiner tree problem. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1304–1315. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Kostikas, K., Fragakis, C.: Genetic programming applied to mixed integer programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 113–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  25. 25.
    Lin, A.Z.-Z., Bean, J., White, I.C.C.: A hybrid genetic/optimization algorithm for finite horizon partially observed markov decision processes. Journal on Computing 16(1), 27–38 (2004)MathSciNetGoogle Scholar
  26. 26.
    Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover and Kochenberger [17], pp. 321–353Google Scholar
  27. 27.
    Marino, A., Prügel-Bennett, A., Glass, C.A.: Improving graph colouring with linear programming and genetic algorithms. In: Proceedings of EUROGEN 1999, Jyväskyiä, Finland, pp. 113–118 (1999)Google Scholar
  28. 28.
    Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover and Kochenberger [17], pp. 105–144.Google Scholar
  29. 29.
    Nagar, A., Heragu, S.S., Haddock, J.: A meta-heuristic algorithm for a bi-criteria scheduling problem. Annals of Operations Research 63, 397–414 (1995)CrossRefGoogle Scholar
  30. 30.
    Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)zbMATHGoogle Scholar
  31. 31.
    Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and metaheuristics for 0-1 programming. International Transactions in Operational Research 9, 731–746 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Puchinger, J., Raidl, G.R.: An evolutionary algorithm for column generation in integer programming: an effective approach for 2D bin packing. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 642–651. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. Technical Report TR 186–1–04–04, Institute of Computer Graphics and Algorithms, Vienna University of Technology, submitted to the European Journal of Operations Research (2004)Google Scholar
  34. 34.
    Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 162–173. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0–1 knapsack problem. In: Fogel, D.B. (ed.) Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 207–211. IEEE Press, Los Alamitos (1998)Google Scholar
  36. 36.
    Raidl, G.R., Feltl, H.: An improved hybrid genetic algorithm for the generalized assignment problem. In: Haddadd, H.M., others (eds.) Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 990–995. ACM Press, New York (2004)Google Scholar
  37. 37.
    Staggemeier, A.T., Clark, A.R., Aickelin, U., Smith, J.: A hybrid genetic algorithm to solve a lot-sizing and scheduling problem. In: Proceedings of the 16th triannual Conference of the International Federation of Operational Research Societies, Edinburgh, U.K. (2002)Google Scholar
  38. 38.
    Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)CrossRefGoogle Scholar
  39. 39.
    Talukdar, S., Murty, S., Akkiraju, R.: Asynchronous teams. In: Glover and Kochenberger [17], pp. 537–556.Google Scholar
  40. 40.
    Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for combinatorial optimisation. Transactions of the Society of Instrument and Control Engineers 130, 329–336 (1994)Google Scholar
  41. 41.
    Thompson, P., Orlin, J.: The theory of cycle transfers. Technical Report OR-200-89, MIT Operations Research Center, Boston, MA (1989)Google Scholar
  42. 42.
    Thompson, P., Psaraftis, H.: Cycle transfer algorithm for multivehicle routing and scheduling problems. Operations Research 41, 935–946 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Vasquez, M., Hao, J.-K.: A hybrid approach for the 0–1 multidimensional knapsack problem. In: Proceedings of the International Joint Conference on Artificial Intelligence 2001, pp. 328–333 (2001)Google Scholar
  44. 44.
    Woodruff, D.L.: A chunking based selection strategy for integrating meta-heuristics with branch and bound. In: Voss, S., et al. (eds.) Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 499–511. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jakob Puchinger
    • 1
  • Günther R. Raidl
    • 1
  1. 1.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria

Personalised recommendations