Grammar-based Classifier System (GCS) is a new version of Learning Classifier Systems in which classifiers are represented by context-free grammar in Chomsky Normal Form (CNF). Discovering component of the GCS and fitness function were modified and applied for inferring a toy-grammar, a tiny natural language grammar expressed in CNF. The results obtained proved that proposed rule’s fertility improves performance of the GCS considerably.


Genetic Algorithm Production Rule Derivation Tree Grammar Rule Pushdown Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arabas, J.: Wyklady z algorytmow ewolucyjnych. WNT, Warszawa (2001) (in Polish) Google Scholar
  2. 2.
    Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)Google Scholar
  3. 3.
    Aycinena, M., Kochenderfer, M.J., Mulford, D.C.: An evolutionary approach to natural language grammar induction. Final project for CS224N: Natural Language Processing. Stanford University (2003)Google Scholar
  4. 4.
    Bianchi, D.: Learning Grammatical Rules from Examples Using a Credit Assignement Algorithm. In: Proc. of The First Online Workshop on Soft Computing (WSC1), Nagoya, pp. 113–118 (1996)Google Scholar
  5. 5.
    Cichosz, P.: Systemy uczace sie. WNT, Warszawa (2000) (in Polish) Google Scholar
  6. 6.
    Cyre, W.R.: Learning Grammars with a Modified Classifier System. In: Proc. 2002 World Congress on Computational Intelligence, Honolulu, Hawaii, pp. 1366–1371 (2002)Google Scholar
  7. 7.
    Dupont, P.: Regular Grammatical Inference from Positive and Negative Samples by Genetic Search. In: Grammatical Inference and Application, Second International Colloquium ICG 1994, pp. 236–245. Springer, Berlin (1994)Google Scholar
  8. 8.
    Gold, E.: Language identification in the limit. Information Control 10, 447–474 (1967)zbMATHCrossRefGoogle Scholar
  9. 9.
    de la Higuera, C.: Current trends in grammatical inference. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M., et al. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 28–31. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Holland, J.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in theoretical biology, Plenum, New York (1976)Google Scholar
  11. 11.
    Holland, J.: Escaping Brittleness: The possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems. In: Michalski, R.S., et al. (eds.) Machine Learning, an artificial intelligence approach, vol. II, pp. 593–623. Morgan Kaufmann, San Francisco (1986)Google Scholar
  12. 12.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  13. 13.
    Huijsen, W.: Genetic Grammatical Inference: Induction of Pushdown Automata and Context-Free Grammars from Examples Using Genetic Algorithms. M.Sc.- thesis, Dept. of Computer Science, University of Twente, Enschede, The Netherlands (1993)Google Scholar
  14. 14.
    Kammeyer, T.E., Belew, R.K.: Stochastic Context-Free Grammar Induction with a Genetic Algorithm Using Local Search. Technical Report CS96-476, Cognitive Computer Science Research Group, Computer Science and Engineering Department, University of California at San Diego (1996)Google Scholar
  15. 15.
    Keller, B., Lutz, R.: Learning Stochastic Context-Free Grammars from Corpora Using a Genetic Algorithm. In: Proceedings International Conference on Artificial Neural Networks and Genetic Algorithms ICANNGA 1997 (1997)Google Scholar
  16. 16.
    Korkmaz, E.E., Ucoluk, G.: Genetic Programming for Grammar Induction. In: Proc. of the Genetic and Evolutionary Conference GECCO-2001, Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  17. 17.
    Lankhorst, M.M.: A Genetic Algorithm for the Induction of Nondeterministic Pushdown Automata. Computing Science Reports CS-R 9502, Department of Computing Science, University of Groningen (1995)Google Scholar
  18. 18.
    Lanzi, P.L., Riolo, R.L.: A Roadmap to the Last Decade of Learning Classifier System Research. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 33–62. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Lee, L.: Learning of Context-Free Languages: A Survey of the Literature. Report TR-12-96. Harvard University, Cambridge, Massachusetts (1996)Google Scholar
  20. 20.
    Losee, R.M.: Learning Syntactic Rules and Tags with Genetic Algorithms for Information Retrieval and Filtering: An Empirical Basis for Grammatical Rules. In: Information Processing & Management (1995)Google Scholar
  21. 21.
    Lucas, S.: Context-Free Grammar Evolution. In: First International Conference on Evolutionary Computing, pp. 130–135 (1994)Google Scholar
  22. 22.
    Mühlenbein, H., Schlierkamp-Voosen, D.: Analysis of Selection, Mutation and Recombination in Genetic Algorthms. In: Banzhaf, W., Eckman, F.H. (eds.) Evolution as a Computational Process 1992. LNCS, vol. 899, pp. 188–214. Springer, Heidelberg (1995)Google Scholar
  23. 23.
    Smith, T.C., Witten, I.H.: Learning Language Using Genetic Algorithms. In: Wermter, S., Rilo, E., Scheler, G. (eds.) IJCAI-WS 1995. LNCS, vol. 1040, Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Unold, O.: Context-free grammar induction using evolutionary methods. WSEAS Trans. on Circuits and Systems 3(2), 632–637 (2003)Google Scholar
  25. 25.
    Unold, O., Cielecki, L.: Grammar-based Classifier System. In: Kacprzyk, J., Koronacki, J. (eds.) First Warsaw International Seminar on Intelligent Systems, EXIT Publishing House, Warsaw (2004) (in print)Google Scholar
  26. 26.
    Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 147–175 (1995)CrossRefGoogle Scholar
  27. 27.
    Wyard, P.: Context Free Grammar Induction Using Genetic Algorithms. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 514–518. Morgan Kaufmann, San Diego (1991)Google Scholar
  28. 28.
    Zhou, H., Grefenstette, J.J.: Induction of Finite Automata by Genetic Algorithms. In: Proceedings of the 1986 International Conference on Systems, Man and Cybernetics, pp. 170–174 (1986)Google Scholar
  29. 29.
    Younger, D.: Recognition and parsing of context-free languages in time n3. University of Hawaii Technical Report, Department of Computer Science (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Olgierd Unold
    • 1
  1. 1.Institute of Engineering CyberneticsWroclaw University of TechnologyWroclawPoland

Personalised recommendations