Advertisement

Applications of Conformal Geometric Algebra in Computer Vision and Graphics

  • Rich Wareham
  • Jonathan Cameron
  • Joan Lasenby
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3519)

Abstract

This paper introduces the mathematical framework of conformal geometric algebra (CGA) as a language for computer graphics and computer vision. Specifically it discusses a new method for pose and position interpolation based on CGA which firstly allows for existing interpolation methods to be cleanly extended to pose and position interpolation, but also allows for this to be extended to higher-dimension spaces and all conformal transforms (including dilations). In addition, we discuss a method of dealing with conics in CGA and the intersection and reflections of rays with such conic surfaces. Possible applications for these algorithms are also discussed.

Keywords

Computer Graphic Geometric Algebra Displacement Rotor Parabolic Mirror Quadratic Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Nayar, S.: A theory of single-viewpoint catadioptric image formation. International Journal of Computer vision, 1–22 (1999)Google Scholar
  2. 2.
    Ball, S.R.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900)Google Scholar
  3. 3.
    Barreto, J., Araujo, H.: Paracatadioptric camera calibration using lines. In: Proceedings of ICCV, pp. 1359–1365 (2003)Google Scholar
  4. 4.
    Bayro-Corrochano, E., López-Franco, C.: Omnidirectional vision: Unified model using conformal geometry. In: Proceedings of ECCV, pp. 536–548 (2004)Google Scholar
  5. 5.
    Buss, S., Fillmore, J.: Spherical averages and applications to spherical splines and interpolation. ACM Transactions on Graphics, 95–126 (2001)Google Scholar
  6. 6.
    Cameron, J.: Applications of Geometric Algebra, PhD First Year Report, Cambridge University Engineering Department (August 2004)Google Scholar
  7. 7.
    Cendes, Z., Wong, S.: C1 quadratic interpolation over arbitrary point sets. IEEE Computer Graphics and Applications, 8–16 (November 1987)Google Scholar
  8. 8.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics 5(1), 62–73 (1999)CrossRefGoogle Scholar
  9. 9.
    Doran, C., Lasenby, A.: Geometric Algebra for Physicists. In: CUP (2003)Google Scholar
  10. 10.
    Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal of Computer Vision, 223–243 (2001)Google Scholar
  11. 11.
    Govindu, V.: Lie-algebraic averaging for globally consistent motion estimation. In: Proceedings of CVPR, pp. 684–691 (2004)Google Scholar
  12. 12.
    Hestenes, D.: New Foundations for Classical Mechanics, 2nd edn. Reidel, Dordrechtz (1999)zbMATHGoogle Scholar
  13. 13.
    Hestenes, D.: Old wine in new bottles: A new algebraic framework for computational geometry. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra with Applications in Science and Engineering, ch. 1. Birkhäuser, Basel (2001)Google Scholar
  14. 14.
    Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A unified language for mathematics and physics. Reidel, Dordrechtz (1984)zbMATHGoogle Scholar
  15. 15.
    Kshirsagar, S., Garchery, S., Magnenat-Thalmann, N.: Feature point based mesh deformation applied to mpeg-4 facial animation. In: Proceedings of the IFIP TC5/WG5.10 DEFORM 2000 Workshop and AVATARS 2000 Workshop on Deformable Avatars, pp. 24–34. Kluwer, Dordrecht (2001)Google Scholar
  16. 16.
    Lasenby, A.: Recent applications of conformal geometric algebra. In: International Workshop on Geometric Invariance and Applications in Engineering, Xi’an, China (May 2004)Google Scholar
  17. 17.
    Lasenby, J., Lasenby, A., Wareham, R.: A Covariant Approach to Geometry using Geometric Algebra. Technical Report CUED/F-INFENG/TR-483, Cambridge University Engineering Department (2004)Google Scholar
  18. 18.
    Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous co-ordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, pp. 25–58. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Lillholm, M., Dam, E.B., Koch, M.: Quaternions, interpolation and animation. Technical Report DIKU-TR-98/5, University of Copenhagen (July 1998)Google Scholar
  20. 20.
    Mann, S., Dorst, L.: Geometric algebra: A computational framework for geometrical applications (part 2). IEEE Comput. Graph. Appl. 22(4), 58–67 (2002)CrossRefGoogle Scholar
  21. 21.
    Moakher, M.: Means and averaging in the group of rotations. SIAM Journal of Applied Matrix Analysis, 1–16 (2002)Google Scholar
  22. 22.
    Park, F., Ravani, B.: Smooth invariant interpolation of rotations. ACM Transactions on Graphics, 277–295 (1997)Google Scholar
  23. 23.
    Shoemake, K.: Animating rotation with quaternion curves. Computer Graphics 19(3), 245–251 (1985)CrossRefGoogle Scholar
  24. 24.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH 1996 Proceedings, pp. 331–318 (1994)Google Scholar
  25. 25.
    Wareham, R., Lasenby, J.: Rigid body pose and position interpolation using geometric algebra. Submitted to ACM Transactions on Graphics (September 2004)Google Scholar
  26. 26.
    Wareham, R., Lasenby, J., Lasenby, A.: Computer Graphics using Conformal Geometric Algebra. Philosophical Transactions A of the Royal Society, special issue (to appear soon)Google Scholar
  27. 27.
    Ying, X., Hu, Z.: Spherical objects based motion estimation for catadioptric cameras. In: Proceedings of ICPR, pp. 231–234 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rich Wareham
    • 1
  • Jonathan Cameron
    • 1
  • Joan Lasenby
    • 1
  1. 1.Engineering DepartmentCambridge UniversityCambridgeUnited Kingdom

Personalised recommendations