Gap-Junctions Promote Synchrony in a Network of Inhibitory Interneurons in the Presence of Heterogeneities and Noise

  • Santi Chillemi
  • Alessandro Panarese
  • Michele Barbi
  • Angelo Di Garbo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)


Recent experiments revealed that inhibitory interneurons networks are coupled by both electrical and inhibitory synapses. Moreover these findings suggest that a population of interneurons operate as a clockwork affecting the processing of neural information. In this paper we determine, in the weak coupling limit, the parameter values leading to the emergence of synchronous regime in a pair of Fast Spiking interneurons coupled by chemical and electrical synapses. Then, our results will be compared with those obtained recently in [1] for a pair of coupled Integrate & Fire neural models. Next, the effects of heterogeneities and noise on the coherence properties of the network (containing two or more coupled units) will be investigated numerically.


Spike Train Inhibitory Interneuron Electrical Coupling Weak Coupling Limit Biophysical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewis, T., Rinzel, J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comp. Neuroscience 14, 283–309 (2003)CrossRefGoogle Scholar
  2. 2.
    Galarreta, M., Hestrin, S.: Electrical synapses between GABA-releasing interneurons. Nat. Neurosci. 2, 425–433 (2001)CrossRefGoogle Scholar
  3. 3.
    Di Garbo, A., Barbi, M., Chillemi, S.: Synchronization in a network of fast-spiking interneurons. BioSystems 67, 45–53 (2002)CrossRefGoogle Scholar
  4. 4.
    Di Garbo, A., Panarese, A., Chillemi, S.: Gap-junctions promote synchronous activities in a network of inhibitory interneurons. BioSystems 79, 91–99 (2005)CrossRefGoogle Scholar
  5. 5.
    Van Vreeswijk, C.A., Abbott, L.F., Ermentrout, G.B.: Inhibition, not excitation, synchronizes coupled neurons. J. Comp. Neuroscience 1, 303–313 (1995)Google Scholar
  6. 6.
    Wang, X.J., Rinzel, J.: Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4, 84–97 (1992)CrossRefGoogle Scholar
  7. 7.
    Wang, X.J., Buzsaki, G.: Gamma oscillations by synaptic inhibition in an interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)Google Scholar
  8. 8.
    Whittington, M.A., Traub, R.D., Jefferys, J.G.R.: Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995)CrossRefGoogle Scholar
  9. 9.
    Whittington, M.A., Traub, R.D., Kopell, N., Ermentrout, B., Buhl, E.H.: Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysio. 38, 315–336 (2001)CrossRefGoogle Scholar
  10. 10.
    Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the cortex connected by electrical synapses. Nature 402, 72–75 (1999)CrossRefGoogle Scholar
  11. 11.
    Gibson, J.R., Beierlein, M., Connors, B.W.: Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999)CrossRefGoogle Scholar
  12. 12.
    Erisir, A., Lau, D., Rudy, B., Leonard, C.S.: Function of specific K  +  channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiology 82, 2476–2489 (1999)Google Scholar
  13. 13.
    Galarreta, M., Hestrin, S.: Electrical and chemical Synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. PNAS USA 99, 12438–12443 (2002)CrossRefGoogle Scholar
  14. 14.
    Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, Segev (eds.) Methods in neural modelling. The MIT Press, Cambridge (1989)Google Scholar
  15. 15.
    Martina, M., Jonas, P.: Functional differences in Na  +  channel gating between fast spiking interneurons and principal neurons of rat hippocampus. J. of Physiol. 505.3, 593–603 (1997)CrossRefGoogle Scholar
  16. 16.
    Coetzee, W.A., et al.: Molecular diversity of K  +  channels. Annals of the New York Academy of Sciences 868, 233–285 (1999)CrossRefGoogle Scholar
  17. 17.
    Lien, C.C., Jonas, P.: Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J. of Neurosci. 23, 2058–2068 (2003)Google Scholar
  18. 18.
    Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–430 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Santi Chillemi
    • 1
  • Alessandro Panarese
    • 1
  • Michele Barbi
    • 1
  • Angelo Di Garbo
    • 1
  1. 1.Istituto di Biofisica CNR, Sezione di PisaPisaItaly

Personalised recommendations