Formulation and Validation of a Method for Classifying Neurons from Multielectrode Recordings

  • M. P. Bonomini
  • J. M. Ferrandez
  • J. A. Bolea
  • E. Fernandez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)

Abstract

The issue of classification has long been a central topic in the analysis of multielectrode data, either for spike sorting or for getting insight into interactions among ensembles of neurons. Related to coding, many multivariate statistical techniques such as linear discriminant analysis (LDA) or artificial neural networks (ANN) have been used for dealing with the classification problem providing very similar performances. This is, there is no method that stands out from others and the right decision about which one to use is mainly depending on the particular cases demands. Therefore, we developed and validated a simple method for classification based on two different behaviours: periodicity and latency response. The method consists of creating sets of relatives by defining an initial set of templates based on the autocorrelograms or peristimulus time histograms (PSTHs) of the units and grouping them according to a minimal Euclidian distance among the units in a class and maximizing it among different classes. It is shown here the efficiency of the method for identifying coherent subpopulations within multineuron populations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Secker, H., Searle, C.: Time Domain Analysis of Auditory-Nerve Fibers Firing Rates. J. Acoust. Soc. Am. 88, 1427–1436 (1990)CrossRefGoogle Scholar
  2. 2.
    Buck, L.B.: Information Coding in the vertebrate olfactory system. Ann. Rev. Neurosci. 19, 517–544 (1996)CrossRefGoogle Scholar
  3. 3.
    Fitzhugh, R.A.: A Statistical Analyzer for Optic Nerve Messages. J. Gen. Physiology 41, 675–692 (1958)CrossRefGoogle Scholar
  4. 4.
    Warland, D., Reinagel, P., Meister, M.: Decoding Visual Information from a Population of Retinal Ganglion Cells. J. Neurophysiology 78, 2336–2350 (1997)Google Scholar
  5. 5.
    Fernández, E., Ferrández, J.M., Ammermüller, J., Normann, R.A.: Population Coding in spike trains of sinultaneosly recorded retinal ganglion cells Information. Brain Research 887, 222–229 (2000)CrossRefGoogle Scholar
  6. 6.
    Tovee, M.J., Rolls, E.T., Treves, A., Bellis, R.P.: Encoding and the Responses of Single Neurons in the Primate Temporal Visual Cortex. Journal of Neurophysiology 70, 640–654 (1993)Google Scholar
  7. 7.
    Ferrández, J.M., Bolea, J.A., Ammermüller, J., Normann, R.A., Fernández, E.: A Neural Network Approach for the Analysis of Multineural Recordings in Retinal Ganglion Cells: Towards Population Encoding. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 289–298. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley (1967)Google Scholar
  9. 9.
    Sim, A.W.K., Jin, C., Chan, L.W., Leong, P.H.W.: A comparison of methods for clustering of electrophysiological multineuron recordings. IEEE Engineering in Medicine and Biology Society, pp. 1381–1384 (1998)Google Scholar
  10. 10.
    Jones, K.E., Campbell, P.K., Normann, R.A.: A glass/silicon composite intracortical electrode array. Annals of Biomedical Engineering 20, 423–437 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. P. Bonomini
    • 1
  • J. M. Ferrandez
    • 2
  • J. A. Bolea
    • 1
  • E. Fernandez
    • 1
  1. 1.Instituto de BioingenieraUniv. Miguel HernándezAlicante
  2. 2.Dept. Electrnica y Tecnologa de ComputadoresUniv. Politécnica de Cartagena 

Personalised recommendations