A Haptic System for the Lucs Haptic Hand I

  • Magnus Johnsson
  • Robert Pallbo
  • Christian Balkenius
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)

Abstract

This paper describes a system for haptic object categorization. It consists of a robotic hand, the LUCS Haptic Hand I, together with software modules that to some extent simulate the functioning of the primary and the secondary somatosensory cortices. The haptic system is the first one in a project at LUCS aiming at studying haptic perception. In the project, several robotic hands together with cognitive computational models of the corresponding human neurophysiological systems will be built. The haptic system was trained and tested with a set of objects consisting of balls and cubes, and the activation in the modules corresponding to secondary somatosensory cortex was studied. The results suggest that the haptic system is capable of categorization of objects according to size, if the shapes of the objects are restricted to spheres and cubes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balkenius, C.: Ikaros (2004) (2004-11-24), http://www.lucs.lu.se/IKAROS/
  2. 2.
    Balkenius, C., Morén, J.: From isolated components to cognitive systems. ERCIM News, p. 16 (April 2003)Google Scholar
  3. 3.
    Dario, P., Guglielmelli, E., Laschi, C.: Humanoids and personal robots: design and experiments. Journal of robotic systems 18(12), 673–690 (2001)MATHCrossRefGoogle Scholar
  4. 4.
    Dario, P., Laschi, C., Carrozza, M.C., Guglielmelli, E., Teti, G., Massa, B., Zecca, M., Taddeucci, D., Leoni, F.: An integrated approach for the design and development of a grasping and manipulation system in humanoid robotics. In: Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems, vol. 1, pp. 1–7 (2000)Google Scholar
  5. 5.
    Dario, P., Laschi, C., Menciassi, A., Guglielmelli, E., Carrozza, M.C., Micera, S.: Interfacing neural and artificial systems: from neuroengineering to neurorobotics. In: Proceedings or the 1st international IEEE EMBS conference on neural engineering, pp. 418–421 (2003)Google Scholar
  6. 6.
    DeLaurentis, K.J., Mavroidis, C.: Development of a shape memory alloy actuated robotic hand (2000) (2004-10-28), http://citeseer.ist.psu.edu/383951.html
  7. 7.
    Gardner, E.P., Kandel, E.R.: Touch. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Principles of neural science, pp. 451–471. McGraw-Hill, New York (2000)Google Scholar
  8. 8.
    Gardner, E.P., Martin, J.H., Jessell, T.M.: The bodily senses. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Principles of neural science, pp. 430–450. McGraw-Hill, New York (2000)Google Scholar
  9. 9.
    Gentaz, E.: General characteristics of the anatomical and functional organization of cutaneous and haptic perceptions. In: Hatwell, Y., Streri, A., Gentaz, E. (eds.) Touching for knowing, pp. 17–31. John Benjamins Publishing Company, Amsterdam (2003)Google Scholar
  10. 10.
    Gentaz, E., Hatwell, Y.: Haptic processing of spatial and material object properties. In: Hatwell, Y., Streri, A., Gentaz, E. (eds.) Touching for knowing, pp. 123–159. John Benjamins Publishing Company, Amsterdam (2003)Google Scholar
  11. 11.
    Hatwell, Y.: Manual exploratory procedures in children and adults. In: Hatwell, Y., Streri, A., Gentaz, E. (eds.) Touching for knowing, pp. 67–82. John Benjamins Publishing Company, Amsterdam (2003)Google Scholar
  12. 12.
    Johnsson, M.: Cortical Plasticity – A Model of Somatosensory Cortex (2004), http://www.lucs.lu.se/People/Magnus.Johnsson
  13. 13.
  14. 14.
    Johnsson, M., Pallbo, R., Balkenius, C.: Experiments with haptic perception in a robotic hand (2005), http://www.lucs.lu.se/People/Magnus.Johnsson/
  15. 15.
    Klatzky, R., Lederman, S.: The haptic identification of everyday objects. In: Hatwell, Y., Streri, A., Gentaz, E. (eds.) Touching for knowing, pp. 105–121. John Benjamins Publishing Company, Amsterdam (2003)Google Scholar
  16. 16.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  17. 17.
    Kohonen, T.: Self-organizing maps. Springer, Berlin (2001)MATHGoogle Scholar
  18. 18.
    Laschi, C., Gorce, P., Coronado, J., Leoni, F., Teti, G., Rezzoug, N., Guerrero-Gonzalez, A., Molina, J.L.P., Zollo, L., Guglielmelli, E., Dario, P., Burnod, Y.: An anthropomorphic robotic platform for ex-perimental validation of biologically-inspired sensorymotor co-ordination in grasping. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems, pp. 2545–2550 (2002)Google Scholar
  19. 19.
    Rhee, C., Chung, W., Kim, M., Shim, Y., Lee, H.: Door opening control using the multi-fingered robotic hand for the indoor service robot. In: Proceedings of the 2004 IEEE international conference on robotics & automation, vol. 4, pp. 4011–4016 (2004)Google Scholar
  20. 20.
    Streri, A.: Manual exploration and haptic perception in infants. In: Hatwell, Y., Streri, A., Gentaz, E. (eds.) Touching for knowing, pp. 51–66. John Benjamins Publishing Company, Amsterdam (2003)Google Scholar
  21. 21.
    Sugiuchi, H., Hasegawa, Y., Watanabe, S., Nomoto, M.: A control system for multi-fingered robotic hand with distributed touch sensor, Industrial electronics society. In: IECON 2000. 26th annual conference of the IEEE, vol. 1, pp. 434–439 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Magnus Johnsson
    • 1
    • 2
  • Robert Pallbo
    • 1
  • Christian Balkenius
    • 2
  1. 1.Dept. of Computer ScienceLund UniversitySweden
  2. 2.Lund University Cognitive ScienceSweden

Personalised recommendations