A Novel Intrinsic Wave Phenomenon in Low Excitable Biological Media

  • Roustem Miftahof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)


Based on a novel concept of a functional unit a mathematical model of a segment of the gut is developed. Numerical investigation into the dynamics of the electromechanical wave phenomenon reveals the fundamental principles of wave initiation, formation, and propagation along electrically anisotropic longitudinal and isotropic circular smooth muscle syncytia. A pattern of self-sustained electrical activity with the formation of spiral waves is discovered in the longitudinal syncytia and is attributed to the change in conductivity in the syncytia as a result of mechanical deformation of smooth muscle fibers. Although no direct experimental comparison to the theoretical findings is possible at this stage, the model provides new insight onto the basics of physiological processes – slow wave activity, electromechanical conjugation, and a clinical entity, gastrointestinal dysrhythmias.


Anorexia Nervosa Functional Unit Slow Wave Wave Phenomenon Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abell, T.L., Malagelada, J.R., Lucas, A.R., Brown, M.L., Camilleri, M., Go, W.L.M., Azpiroz, F., Callaway, C.W., Kao, P.C., Zinsmeister, A.R., Huse, D.M.: Gastric Electromechanical and Neurohormonal Function in Anorexia Nervosa. Gastroenterol 92, 958–965 (1987)Google Scholar
  2. 2.
    Aliev, R.R., Richards, W., Wikswo, J.P.: A Simple Nonlinear Model of Electrical Activity in the Intestine. J. Theor. Biol. 204, 21–28 (2000)CrossRefGoogle Scholar
  3. 3.
    Amaris, M.A., Rashev, P.Z., Mintchev, M.P., Bowes, K.L.: Microprocessor Controlled Movement of Solid Colonic Content Using Sequential Neural Electrical Stimulation. Gut 50, 475–479 (2002)CrossRefGoogle Scholar
  4. 4.
    Gao, C., Petersen, P., Liu, W., Arendt-Nelsen, L., Drewes, A.M., Gregersen, H.: Sensory Motor Responses to Volume Controlled Duodenal Distension. Neurogast. and Mot. 14, 365–374 (2002)CrossRefGoogle Scholar
  5. 5.
    D’Antona, G., Hennig, G.W., Costa, M., Humphreys, C.M., Brookes, S.J.H.: Analysis of Motor Patterns in the Isolated Guinea-pig Large Intestine by Spatio-Temporal Maps. Neurogastroenterol. and Mot. 13, 483–492 (2001)CrossRefGoogle Scholar
  6. 6.
    Holle, G.E., Steinbach, E., Forth, W.: Effects of Erythromycin in the Dog Upper Gastrointestinal Tract. Am. J. Physiol. 263, G52–G59 (1992)Google Scholar
  7. 7.
    Koch, K.L., Sterm, R.M., Steward, W.R.: Gastric Emptying and Gastric Myoelectrical Activity in Patients with Diabetic Gastroparesis: Effects of Long-Term Domperidone Treatment. Am. J. Gastroenterol. 84, 1069–1076 (1989)Google Scholar
  8. 8.
    Lammers, W.J.E.P.: (2000b) Propagation of Individual Spikes as ”Patches” of Activation in the Isolated Feline Duodenum. Am. J. Physiol., Liver Physiol. 278, G297–G307 (2000)Google Scholar
  9. 9.
    Lammers, W.J.E.P., Dhanasekaran, S., Slack, J.R., Stephen, B.: Two-Dimensional High-Resolution Motility Mapping in the Isolated Feline Duodenum: Methodology and Initial Results. Neurogastroenterol. and Mot. 13, 309–323 (2001)CrossRefGoogle Scholar
  10. 10.
    Lammers, W.J.E.P., Kais, A., Singh, S., Arafat, K., El-Sharkawy, T.Y.: Multielectrode Mapping of Slow-Wave Activity in the Isolated Rabbit Duodenum. J. Appl. Physiol. 74(3), 1454–1461 (1993)Google Scholar
  11. 11.
    Lammers, W.J.E.P., Slack, J.R.: Of Slow Waves and Spike Patches. News in Physiol. Sci. 16, 138–144 (2001)Google Scholar
  12. 12.
    Lammers, W.J.E.P., Slack, J.R., Stephen, B., Pozzan, O.: The Spatial Behavior of Spike Patches in the Feline Gastroduodenal Junction in Vitro. Neurogastroent. and Motil. 12, 467–473 (2000)CrossRefGoogle Scholar
  13. 13.
    Miftakhov, R.N., Abdusheva, G.R., Christensen, J.: Numerical Simulation of Motility Patterns of the Small Bowel. II. Comparative Pharmacological Validation of a Mathematical Model. J. Theor. Biol. 200, 261–290 (1999)CrossRefGoogle Scholar
  14. 14.
    Miftakhov, R., Christensen, J.: A model of the Enteral Sympathetic Communication. In: NC 2000 Symposium, Berlin, Germany, pp. 454–462 (2000)Google Scholar
  15. 15.
    Miftakhov, R., Christensen, J.: A Physicochemical Basis of Synaptic Transmission in the Myenteric Nervous Plexus. In: Biophysical Neural Networks, pp. 147–176. Mary Ann Liebert Inc., New York (2001)Google Scholar
  16. 16.
    Miftakhov, R., Vannier, M.V.: Nonlinear Dynamic Waves in Electromechanical Excitable Biological Media. In: Advances in Fluid Mechanics, pp. 725–735. WIT Press, Southampton (2002)Google Scholar
  17. 17.
    Miftakhov, R.N., Wingate, D.L.: Numerical Simulation of the Gradual Reflex of the Small Bowel. In: 14th Int Conf IEEE/EMBS, Paris, France, pp. 1634–1637 (1992)Google Scholar
  18. 18.
    Wingate, D.L.: Backwards and Forwards with the Migrating Complex. Dig. Dis. Sci. 26, 641–666 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Roustem Miftahof
    • 1
  1. 1.Korea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations