Advertisement

Evolved Neural Reflex-Oscillators for Walking Machines

  • Arndt von Twickel
  • Frank Pasemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)

Abstract

Legged locomotion has not been understood well enough to build walking machines that autonomously navigate through rough terrain. The current biological understanding of legged locomotion implies a highly decentralised and modular control structure. Neurocontrollers were developed for single, morphological distinct legs of a hexapod walking machine through artificial evolution and physical simulation. The results showed extremely small reflex-oscillators which inherently relied on the sensori-motor loop and a hysteresis effect. Relationships with biological findings are shortly discussed.

Keywords

Central Pattern Generator Rough Terrain Stick Insect Gastric Mill Neural Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehmann, S.: How animals move: An integrative view. Science 288, 100–106 (2000)CrossRefGoogle Scholar
  2. 2.
    Wendler, G.: The co-ordination of walking movements in arthropods. Symp. Soc. exp. Biol. 20, 229–249 (1966)Google Scholar
  3. 3.
    Orlovsky, G., Deliagina, T., Grillner, S.: Neuronal Control of Locomotion. Oxford University Press, Oxford (1999)Google Scholar
  4. 4.
    Schmidt, J., Fischer, H., Büschges, A.: Pattern generation for walking and searching movements of a stick insect leg. ii. control of motoneural activity. J. Neurophysiology 85, 354–361 (2001)Google Scholar
  5. 5.
    Bässler, U., Büschges, A.: Pattern generation for stick insect walking movements – multisensory control of a locomotor program. Brain Research Reviews 27, 65–88 (1998)CrossRefGoogle Scholar
  6. 6.
    Ekeberg, O., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Structure & Development 33, 287–300 (2004)CrossRefGoogle Scholar
  7. 7.
    Brooks, R.A.: Intelligence without representation. Artificial Intelligence, 139–159 (1991)Google Scholar
  8. 8.
    Brooks, R.A.: New approaches to robotics. Science 253, 1227–1232 (1991)CrossRefGoogle Scholar
  9. 9.
    Seys, C.W., Beer, R.D.: Evolving walking: The anatomy of an evolutionary search. In: From Animals to Animats 8: Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior, Los Angeles, CA (2004)Google Scholar
  10. 10.
    Brooks, R.A.: A robot that walks: Emergent behaviors from a carefully evolved network. Technical Report AI MEMO 1091. MIT (1989)Google Scholar
  11. 11.
    Schmitz, J., Dean, J., Kindermann, T., Schumm, M., Cruse, H.: A biologically inspired controller for hexapod walking: Simple solutions by exploiting physical properties. Biol. Bull. 200, 195–200 (2001)CrossRefGoogle Scholar
  12. 12.
    Huelse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16, 249–266 (2004)CrossRefGoogle Scholar
  13. 13.
    Pasemann, F.: A simple chaotic neuron. Physica D 104, 205–211 (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Heinzel, H.G., Weimann, J.M., Marder, E.: The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: An in situ endoscopic and electrophysiological examination. The Journal of Neuroscience 13, 1793–1803 (1993)Google Scholar
  15. 15.
    Dean, J.: Animats and what they can tell us. Trends in Cognitive Science 2, 60–67 (1998)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dean, J., Kindermann, T., Schmitz, J., Schumm, M., Cruse, H.: Control of walking in the stick insect: From behavior and physiology to modeling. Autonomous Robots 7, 271–288 (1999)CrossRefGoogle Scholar
  17. 17.
    Prochazka, A., Gillard, D., Bennett, D.J.: Implications of positive feedback in the control of movement. The Journal of Neurophysiology 77, 3237–3251 (1997)Google Scholar
  18. 18.
    Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15–21 (1990)CrossRefGoogle Scholar
  19. 19.
    Grillner, S., Deliagina, T., Ekeberg, O., Manira, A.E., Hill, R.H., Lansner, A., Orlovsky, G.N., Wallen, P.: Neural networks that coordinate locomotion and body orientation in lamprey. Trends Neurosci. 18, 270–279 (1995)CrossRefGoogle Scholar
  20. 20.
    Grillner, S., Ekeberg, O., Manira, A.E., Lansner, A., Parker, D., Tegner, J., Wallen, P.: Intrinsic function of a neuronal network - a vertebrate central pattern generator. Brain Res. Rev. 26, 184–197 (1998)CrossRefGoogle Scholar
  21. 21.
    Selverston, A.I., Panchin, Y.V., Arshavsky, Y.I., Orlovsky, G.N.: Shared Features of Invertebrate Central Pattern Generators. In: Neurons, Networks, and Motor Behavior, pp. 105–117. MIT Press, Cambridge (1999)Google Scholar
  22. 22.
    Büschges, A., Ludwar, B.C., Bucher, D., Schmidt, J., DiCaprio, R.A.: Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience 19, 1856–1862 (2004)CrossRefGoogle Scholar
  23. 23.
    Delcomyn, F.: Walking robots and the central and peripheral control of locomotion in insects. Autonomous Robots 7, 259–270 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Arndt von Twickel
    • 1
  • Frank Pasemann
    • 1
  1. 1.Fraunhofer Institute AISSankt AugustinGermany

Personalised recommendations