A Tool for Implementing and Exploring SBM Models: Universal 1D Invertible Cellular Automata

  • Joaquín Cerdá
  • Rafael Gadea
  • Jorge Daniel Martínez
  • Angel Sebastiá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)

Abstract

The easiest form of designing Cellular Automata rules with features such as invertibility or particle conserving is to rely on a partitioning scheme, the most important of which is the 2D Margolus neighborhood. In this paper we introduce a 1D Margolus-like neighborhood that gives support to a complete set of Cellular Automata models. We present a set of models called Sliding Ball Models based on this neighborhood and capable of universal computation. We show the way of designing logic gates with these models, propose a digital structure to implement them and finally we present SBMTool, a software development system capable of working with the new models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolfram, S.: A New Kind of Science. Wolfram media (2002)Google Scholar
  2. 2.
    Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern Physics 55, 601–644 (1983)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chopard, B., Droz, M.: Cellular Automata Modelling of Physical Systems. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  4. 4.
    Popovici, A., Popovici, D.: Cellular Automata in Image Processing. In: Proceedings of MTNS 2002 (2002)Google Scholar
  5. 5.
    Toffoli, T.: Cellular Automata as an alternative to (rather than an approximation of) Differential Equations in Modeling Physics. Physica. 10D, 117–127 (1984)MathSciNetGoogle Scholar
  6. 6.
    Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)Google Scholar
  7. 7.
    Sarkar, P.: A brief history of cellular automata. ACM Computing Surveys 32(1), 80–107 (2000)CrossRefGoogle Scholar
  8. 8.
    Shackleford, B., Tanaka, M., Carter, R.J., Snider, G.: FPGA Implementation of Neighborhood-of-Four Cellular Automata Random Number Generators. In: Proceedings of FPGA 2002, pp. 106–112 (2002)Google Scholar
  9. 9.
    Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Physica D, Nonlinear Phenomena 45, 1–3 (1990)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Margolus, N.: Physics-Like models of computation. Physica. 10D, 81–95 (1984)MathSciNetGoogle Scholar
  11. 11.
    Cerdá, J., Gadea, R., Payá, G.: Implementing a Margolus neighborhood Cellular Automata on a FPGA. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 121–128. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Cerdá, J., Gadea, R., Herrero, V., Sebastiá, A.: On the Implementation of a Margolus neighborhood Cellular Automata on FPGA. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 776–785. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Fredkin, E., Toffoli, T.: Conservative Logic. International journal of Theoretical Physics 21, 219–253 (1982)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Margolus, N.: Universal CA’s based on the collisions of soft spheres. In: Adamatzky ed. Collision Based Computation. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Cerdá, J.: Arquitecturas VLSI de Autómatas Celulares para modelado físico. PhD Thesis. Universidad Politécnica de Valencia (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joaquín Cerdá
    • 1
  • Rafael Gadea
    • 1
  • Jorge Daniel Martínez
    • 1
  • Angel Sebastiá
    • 1
  1. 1.Group of Digital Systems Design, Dept. Of Electronic EngineeringPolithecnic University of ValenciaValenciaSpain

Personalised recommendations