Advertisement

On the Moments of Firing Numbers in Diffusion Neuronal Models with Refractoriness

  • Virginia Giorno
  • Amelia G. Nobile
  • Luigi M. Ricciardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)

Abstract

For diffusion neuronal models, the statistical features of the random variable modeling the number of neuronal firings are analyzed by including the additional assumption of the existence of random refractoriness. For long times, the asymptotic behaviors of the mean and variance of the number of firings released by the neuron are determined. Finally, simple asymptotic expressions are obtained under the assumption of exponentially distributed firing times.

Keywords

Refractory Period Order Moment Interspike Interval Austrian Society Firing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buonocore, A., Giorno, V., Nobile, A.G., Ricciardi, L.M.: Towards modeling refractoriness for single neuron’s activity. In: Trappl, R. (ed.) Cybernetics and Systems 2002, vol. 1, pp. 319–324. Austrian Society for Cybernetics Studies, Vienna (2002)Google Scholar
  2. 2.
    Buonocore, A., Giorno, V., Nobile, A.G., Ricciardi, L.M.: A neuronal modeling paradigm in the presence of refractoriness. BioSystems 67, 35–43 (2002)CrossRefGoogle Scholar
  3. 3.
    Esposito, G., Giorno, V., Nobile, A.G., Ricciardi, L.M., Valerio, C.: Interspike analysis for a single neuron’s activity in presence of refractoriness. In: Trappl, R. (ed.) Cybernetics and Systems. Austrian Society for Cybernetics Studies, Vienna, vol. 1, pp. 199–204 (2004)Google Scholar
  4. 4.
    Feller, W.: On probability problems in the theory of counters. In: Studies and Essays, A Volume for the Anniversary of Courant, pp. 105–115. Interscience Publishers, Inc., New York (1948)Google Scholar
  5. 5.
    Feller, W.: The parabolic differential equations and the associated semi–groups of transformations. Ann. Math. 55, 468–518 (1952)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Giorno, V., Lánský, P., Nobile, A.G., Ricciardi, L.M.: Diffusion approximation and first–passage–time problem for a model neuron. III. A birth–and–death process approach. Biol. Cybern. 58, 387–404 (1988)zbMATHGoogle Scholar
  7. 7.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1980)Google Scholar
  8. 8.
    Giorno, V., Nobile, A.G., Ricciardi, L.M.: On the asymptotic behavior of first– passage–time densities for one–dimensional diffusion processes and varying boundaries. Adv. Appl. Prob. 22, 883–914 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Giorno, V., Nobile, A.G., Ricciardi, L.M.: Instantaneous return process and neuronal firings. In: Trappl, R. (ed.) Cybernetics and Systems Research 1992, pp. 829–836. World Scientific, Singapore (1992)Google Scholar
  10. 10.
    Giorno, V., Nobile, A.G., Ricciardi, L.M.: On asymptotic behaviors of stochastic models for single neuron’s activity. In: Trappl, R. (ed.) Cybernetics and System 1996. Austrian Society for Cybernetic Studies, pp. 524–529 (1996)Google Scholar
  11. 11.
    Ricciardi, L.M., Di Crescenzo, A., Giorno, V., Nobile, A.G.: On the instantaneous return process for neuronal diffusion models. In: Marinaro, M., Scarpetta, G. (eds.) Structure: from Physics to General Systems, pp. 78–94. World Scientific, Singapore (1992)Google Scholar
  12. 12.
    Ricciardi, L.M., Di Crescenzo, A., Giorno, V., Nobile, A.G.: An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math. Japonica. 50(2), 247–322 (1999)zbMATHGoogle Scholar
  13. 13.
    Ricciardi, L.M., Esposito, G., Giorno, V., Valerio, C.: Modeling Neuronal Firing in the Presence of Refractoriness. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 1–8. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Siegert, A.J.F.: On the first passage time probability problem. Phys. Rev. 81, 617–623 (1951)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Virginia Giorno
    • 1
  • Amelia G. Nobile
    • 1
  • Luigi M. Ricciardi
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità di SalernoFisciano (SA)Italy
  2. 2.Dipartimento di Matematica e ApplicazioniUniversità di Napoli Federico IINapoliItaly

Personalised recommendations