Structural Statistical Properties of the Connectivity Could Underlie the Difference in Activity Propagation Velocities in Visual and Olfactory Cortices

  • Mavi Sanchez-Vives
  • Albert Compte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)


We show experimentally that the properties of the propagation of activity in cortical slices depend critically on the cortical area explored. Thus, olfactory cortex slices present a much faster speed of propagation than neocortical slices. In order to explore the possibility that this reveals different statistical properties of the underlying synaptic connectivity, we study the small-world properties of a computational network model of slow oscillatory activity that we have previously shown to replicate closely the activity in the slice. We show that for the Gaussian probability connectivity used, progressive reduction of the Gaussian spread makes the network transition from a random, to a small-world and to an ordered network. We then relate the small-world parameters of the connectivity to the velocity of activity propagation in the model. We conclude that the locality parameter C, and not the mean path length L, determines primarily the velocity of propagation.


Propagation Velocity Network Size Cortical Network Piriform Cortex Cortical Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de No Lorente, R.: Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton, J. (ed.) Physiology of the nervous system, Ch.15, 3rd edn., pp. 288–330. Oxford University Press, Oxford (1949)Google Scholar
  2. 2.
    Edelman, G.M., Mountcastle, V.B.: The mindful brain: cortical organization and the group-selective theory of higher brain function. MIT Press, Cambridge (1978)Google Scholar
  3. 3.
    Szentagothai, J.: The neuron network of the cerebral cortex: a functional interpretation. The Ferrier Lecture. Proc. R. Soc. Lond. B. Biol. Sci. 201, 219–248 (1978)CrossRefGoogle Scholar
  4. 4.
    Steriade, M., Núñez, A., Amzica, F.: A novel slow (1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993)Google Scholar
  5. 5.
    Sanchez-Vives, M.V., McCormick, D.A.: Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 10, 1027–1034 (2000)Google Scholar
  6. 6.
    Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.-J.: Cellular and network mechanisms of slow oscillatory activity (1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003)Google Scholar
  7. 7.
    Wang, X.-J.: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999)Google Scholar
  8. 8.
    Wang, X.-J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)Google Scholar
  9. 9.
    Sanchez-Vives, M.V., Descalzo, V.F., Figueroa, A., Reig, R., Compte, A., Gallego, R.: Rhythmic spontaneous activity in piriform cortex. under revision in Cerebral CortexGoogle Scholar
  10. 10.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature, 393–440 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mavi Sanchez-Vives
    • 1
  • Albert Compte
    • 1
  1. 1.Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández - Consejo Superior de Investigaciones CientíficasSant Joan, AlicanteSpain

Personalised recommendations