Interacting Slow and Fast Dynamics in Precise Spiking-Bursting Neurons

  • Fabiano Baroni
  • Joaquin J. Torres
  • Pablo Varona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)


We have explored the role of the interaction of slow and fast intracellular dynamics in generating precise spiking-bursting activity in a model of the heartbeat central pattern generator of the leech. In particular we study the effect of calcium-dependent currents on the neural signatures generated in the circuit. These neural signatures are cell-specific interspike intervals in the spiking-bursting activity of each neuron. Our results show that the slow dynamics of intracelullar calcium concentration can regulate the precision and shape of the neural signatures.


Outward Current Central Pattern Generator Calcium Model Medicinal Leech Versus Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berridge, M.J.: Neuronal calcium signaling. Neuron 21, 13–26 (1998)CrossRefGoogle Scholar
  2. 2.
    Varona, P., Torres, J.J., Abarbanel, H.D.I., Rabinovich, M.I., Elson, R.C.: Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis. Biological Cybernetics 84(2), 91–101 (2001a)CrossRefGoogle Scholar
  3. 3.
    Varona, P., Torres, J.J., Huerta, R., Abarbanel, H.D.I., Rabinovich, M.I.: Regularization mechanisms of spiking-bursting neurons. Neural Networks 14, 865–875 (2001b)CrossRefGoogle Scholar
  4. 4.
    Hartline, D.K., Maynard, D.M.: Motor patterns in the stomatogastric ganglion of the lobster panulirus argus. J. Exp. Biol. 62(2), 405–420 (1976)Google Scholar
  5. 5.
    Russell, D.F., Hartline, D.K.: Bursting neural networks: a reexamination. Science 200(4340), 453–456 (1978)CrossRefGoogle Scholar
  6. 6.
    Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996)Google Scholar
  7. 7.
    Selverston, A.I., Elson, R.C., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I.: Basic principles for generating motor output in the stomatogastric ganglion. Ann. N.Y. Acad. Sci. 860(1), 35–50 (1998)CrossRefGoogle Scholar
  8. 8.
    Szucs, A., Pinto, R.D., Rabinovich, M.I., Abarbanel, H.D.I., Selverston, A.I.: Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. J. Neurophysiol. 89, 1363–1377 (2003)CrossRefGoogle Scholar
  9. 9.
    Latorre, R., Rodríguez, F.B., Varona, P.: Characterization of triphasic rhythms in central pattern generators (I): Interspike interval analysis. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 160–166. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Rodríguez, F.B., Latorre, R., Varona, P.: Characterization of triphasic rhythms in central pattern generators (II): Burst information analysis. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 167–173. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Latorre, R., Rodriguez, F.B., Varona, P.: Effect of individual spiking activity on rhythm generation of central pattern generators. Neurocomputing 58-60, 535–540 (2004)CrossRefGoogle Scholar
  12. 12.
    Peterson, E.L.: Generation and coordination of heartbeat timing oscillation in the medicinal leech. I. Oscillation in isolated ganglia. J. Neurophysiol. 49, 611–626 (1983a)Google Scholar
  13. 13.
    Peterson, E.L.: Generation and coordination of heartbeat timing oscillation in the medicinal leech. II. Intersegmental coordination. J. Neurophysiol. 49, 627–638 (1983b)Google Scholar
  14. 14.
    Hill, A.A., Masino, M.A., Calabrese, R.L.: Model of intersegmental coordination in the leech heartbeat neuronal network. J. Neurophysiol. 87(3), 1586–1602 (2002)Google Scholar
  15. 15.
    Jezzini, S.H., Hill, A.A.V., Kuzyk, P., Calabrese, R.L.: Detailed model of intersegmental coordination in the timing network of the leech heartbeat central pattern generator. J. Neurophysiol. 91, 958–977 (2004)CrossRefGoogle Scholar
  16. 16.
    Hill, A.A.V., Lu, J., Masino, M.A., Olsen, O.H., Calabrese, R.L.: A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of Computational Neuroscience 10, 281–302 (2001)CrossRefGoogle Scholar
  17. 17.
    Angstadt, J.D., Calabrese, R.L.: A hyperpolarization-activated inward current in heart interneurons of the medicinal leech. J. Neurosci. 9, 2846–2857 (1989)Google Scholar
  18. 18.
    Angstadt, J.D., Calabrese, R.L.: Calcium currents and graded synaptic transmission between heart interneurons of the leech. J. Neurosci. 11, 746–759 (1991)Google Scholar
  19. 19.
    Olsen, O.H., Calabrese, R.L.: Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms. J. Neurosci. 16, 4958–4970 (1996)Google Scholar
  20. 20.
    Opdyke, C.A., Calabrese, R.L.: A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech. J. Comp. Physiol. A 175, 781–789 (1994)CrossRefGoogle Scholar
  21. 21.
    Ivanov, A.I., Calabrese, R.L.: Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission. J. Neurosci. 20(13), 4930–4943 (2000)Google Scholar
  22. 22.
    Ivanov, A.I., Calabrese, R.L.: Modulation of spike-mediated synaptic transmission by presynaptic background Ca2+ in leech heart interneurons. J. Neurosci. 23(4), 1206–1218 (2003)Google Scholar
  23. 23.
    Beck, A., Lohr, C., Nett, W., Deitmer, J.W.: Bursting activity in leech Retzius neurons induced by low external chloride. Pflugers Arch. 442(2), 263–272 (2001)CrossRefGoogle Scholar
  24. 24.
    Wessel, R., Kristan Jr., W.B, KleinFeld, D.: Dendritic Ca(2+)-activated K(+) conductances regulate electrical signal propagation in an invertebrate neuron. J. Neurosci. 19(19), 8319–8326 (1999)Google Scholar
  25. 25.
    Johansen, J., Yang, J., Kleinhaus, A.L.: Voltage-clamp analysis of the ionic conductances in a leech neuron with a purely calcium-dependent action potential. J. Neurophysiol. 58(6), 1468–1484 (1987)Google Scholar
  26. 26.
    Calabrese, R.L., Nadim, F., Olsen, O.H.: Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns. J. Neurobiol. 27, 390–402 (1995)CrossRefGoogle Scholar
  27. 27.
    Nadim, F., Calabrese, R.L.: A slow outward current activated by FMRFamide in heart interneurons of the medicinal leech. J. Neurosci. 17, 4461–4472 (1997)Google Scholar
  28. 28.
    Cymbalyuk, G.S., Gaudry, Q., Masino, M.A., Calabrese, R.L.: Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J. Neurosci. 22(24), 10580–10592 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fabiano Baroni
    • 1
  • Joaquin J. Torres
    • 2
    • 3
  • Pablo Varona
    • 1
  1. 1.Grupo de Neurocomputación Biológica (GNB), Dpto. de Ingeniería Informática, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Electromagnetismo y Física de la MateriaUniversidad de GranadaGranadaSpain
  3. 3.Institute Carlos I for Theoretical and Computational PhysicsUniversidad de GranadaGranadaSpain

Personalised recommendations