Realistic Stimulation Through Advanced Dynamic-Clamp Protocols

  • Carlos Muñiz
  • Sara Arganda
  • Francisco de Borja Rodríguez
  • Gonzalo G. de Polavieja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3561)

Abstract

Traditional techniques to stimulate neurons in Neuroscience include current injection using several protocols. In most cases, although neurons are able to react to any stimulus in the physiological range, it is difficult to assess to what extent the response is a natural output to the processing of the input or just an awkward reaction to a foreign signal. In experiments that try to study the precise temporal relationships between the stimulus and the output pattern, it is crucial to use realistic stimulation protocols. Dynamic-clamp is a relatively recent method in electrophysiology to mimic the presence of ionic or synaptic conductances in a cell membrane through the injection of a controlled current waveform. Here we present a set of advanced dynamic-clamp protocols for realistic stimulation of cells that allow from the addition of single and multiple ionic or synaptic conductances, to the reconfiguration of circuits and bidirectional communication of living cells with model neurons including plasticity mechanisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robinson, H.P.C.: Kinetics of synaptic conductances in mammalian central neurons. Neurosci. Res. 16:VI (1991)Google Scholar
  2. 2.
    Robinson, H.P.C., Kawai, N.: Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Methods 49, 157–165 (1993)CrossRefGoogle Scholar
  3. 3.
    Sharp, A.A., O’Neal, M.B., Abbott, L.F., Marder, E.: Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol. 69, 992–995 (1993)Google Scholar
  4. 4.
    Ma, M., Koester, J.: The role of potassium currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic clamp analysis. J. Neuroscience 16, 4089–4101 (1996)Google Scholar
  5. 5.
    Kiehn, O., Kjaerulff, O., Tresch, M.C., Harris-Warrick: Contributions of intrinsic motor neurons properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res. Bull 53, 649–659 (2000)CrossRefGoogle Scholar
  6. 6.
    Chance, F.S., Abbott, L.F., Reyes, A.D.: Gain modulation from background synaptic input. Neuron. 35, 773–782 (2002)CrossRefGoogle Scholar
  7. 7.
    Szucs, A., Varona, P., Volkovskii, A.R., Abarbanel, H.D.I., Rabinovich, M.I., Selverston, A.I.: Interacting Biological and Electronic Neurons Generate Realistic Oscillatory Rhythms. NeuroReport 11(3), 563–569 (2000)CrossRefGoogle Scholar
  8. 8.
    Pinto, R.D., et al.: Extended Dynamic Clamp: controlling up to four neurons using a single desktop computer and interface. J. Neuroscience Methods 108, 39–48 (2001)CrossRefGoogle Scholar
  9. 9.
    Pinto, R.D., Varona, P., Volkovskii, A.R., Szucs, A., Abarbanel, H.D.I., Rabinovich, M.I.: Synchronous behavior of two coupled electronic neurons. Physical Review E 62(2), 2644–2656 (2000)Google Scholar
  10. 10.
    Nowotny, T., Zhigulin, V.P., Selverston, A.I., Abarbanel, H.D., Rabinovich, M.I.: Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J. Neurosci. 23(30), 9776–9785 (2003)Google Scholar
  11. 11.
    Szucs, A., Rozsa, K.S., Salanki, J.: Presynaptic modulation of Lymnaea neurons evoked by computer-generated spike trains. Neuroreport 9(12), 2737–2742 (1998)Google Scholar
  12. 12.
    Prinz, A.A., Abbott, L.F., Marder, E.: The dynamic clamp comes of age. Trends in Neurosciences 27, 218–224 (2004)CrossRefGoogle Scholar
  13. 13.
    LeMasson, G., LeMasson, S., Moulins, M.: From conductances to neural network properties: analysis of simple circuits using the hybrid network method. Prog. Biophys. Molec. Biol. 64, 201–220 (1995)CrossRefGoogle Scholar
  14. 14.
    Sorensen, M., DeWeerth, S., Cymbalyuk, G., Calabrese, R.L.: Using a Hybrid Neural System to Reveal Regulation of Neuronal Network Activity by an Intrinsic Current. Journal of Neuroscience 24, 5427–5438 (2004)CrossRefGoogle Scholar
  15. 15.
    Dorval, A.D., Christini, D.J., White, J.A.: Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering 29, 897–907 (2001)CrossRefGoogle Scholar
  16. 16.
    Raikov, I., Preyer, A., Butera, R.J.: MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments. Journal of Neuroscience Methods 132, 109–123 (2004)CrossRefGoogle Scholar
  17. 17.
    Kullmann, P.H., Wheeler, D.W., Beacom, J., Horn, J.P.: Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. J. Neurophysiol. 91(1), 542–554 (2004)CrossRefGoogle Scholar
  18. 18.
    Muller, K., Nicholls, J., Stent, G.: Neurobiology of the Leech. Cold Spring Harbor Laboratory, New York (1981)Google Scholar
  19. 19.
    Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Philos, Trans. R Soc. London B221, 87–102 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Carlos Muñiz
    • 1
  • Sara Arganda
    • 2
  • Francisco de Borja Rodríguez
    • 1
  • Gonzalo G. de Polavieja
    • 2
  1. 1.Grupo de Neurocomputación Biológica (GNB), Dpto. de Ingeniería Informática, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  2. 2.Laboratorio de Procesamiento Neuronal, Dpto. de Física Teórica, C-XI and Instituto ‘Nicolás Cabrera’, C-XVI, planta 4, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations