Block-Based Methods for Image Retrieval Using Local Binary Patterns

  • Valtteri Takala
  • Timo Ahonen
  • Matti Pietikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

In this paper, two block-based texture methods are proposed for content-based image retrieval (CBIR). The approaches use the Local Binary Pattern (LBP) texture feature as the source of image description. The first method divides the query and database images into equally sized blocks from which LBP histograms are extracted. Then the block histograms are compared using a relative L 1 dissimilarity measure based on the Minkowski distances. The second approach uses the image division on database images and calculates a single feature histogram for the query. It sums up the database histograms according to the size of the query image and finds the best match by exploiting a sliding search window. The first method is evaluated against color correlogram and edge histogram based algorithms. The second, user interaction dependent approach is used to provide example queries. The experiments show the clear superiority of the new algorithms against their competitors.

Keywords

Image Retrieval Local Binary Pattern Query Image Image Block Search Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Swain, M., Ballard, D.: Color Indexing. In: Third International Conference on Computer Vision., pp. 11–32 (1990)Google Scholar
  2. 2.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image Indexing Using Color Correlograms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)Google Scholar
  3. 3.
    Stricker, M., Orengo, M.: Similarity of Color Images. In: SPIE Conference on Storage and Retrieval for Image and Video Databases, pp. 381–392 (1995)Google Scholar
  4. 4.
    Manjunath, B.S., Ohm, J.-R., Vasudevan, V., Yamada, A.: Color and Texture Descriptors. IEEE Transactions on Circuits and Systems for Video Technology 11, 703–715 (2001)CrossRefGoogle Scholar
  5. 5.
    Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 837–842 (1996)CrossRefGoogle Scholar
  6. 6.
    Sim, D.-G., Kim, H.-K., Oh, D.-H.: Translation, Rotation, and Scale Invariant Texture Descriptor for Texture-Based Image Retrieval. In: International Conference on Image Processing, pp. 742–745 (2000)Google Scholar
  7. 7.
    Mao, J., Jain, A.: Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models. Pattern Recognition 25, 173–188 (1992)CrossRefGoogle Scholar
  8. 8.
    Francos, J.M., Meiri, A.Z., Porat, B.: On a Wold-Like Decomposition of 2-D Discrete Random Fields. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 2695–2698 (1990)Google Scholar
  9. 9.
    Tamura, H., Mori, S., Yamawaki, T.: Textural Features Corresponding to Visual Perception. IEEE Transactions on Systems, Man, and Cybernetics 8, 460–473 (1978)CrossRefGoogle Scholar
  10. 10.
    Park, S.J., Park, D.K., Won, C.S.: Core Experiments on MPEG-7 Edge Histogram Descriptor ISO/IEC JTC1/SC29/WG11 - MPEG2000/M5984 (2000)Google Scholar
  11. 11.
    Ojala, T., Pietikäinen, M., Hardwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distribution. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar
  12. 12.
    Yao, C.-H., Chen, S.-Y.: Retrieval of Translated, Rotated and Scaled Color Textures. Pattern Recognition 36, 913–929 (2003)CrossRefGoogle Scholar
  13. 13.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Mäenpää, T., Turtinen, M., Pietikäinen, M.: Real-Time Surface Inspection by Texture. Real-Time Imaging 9, 289–296 (2003)CrossRefGoogle Scholar
  15. 15.
    Pietikäinen, M., Nurmela, T., Mäenpää, T., Turtinen, M.: View-Based Recognition of Real-World Textures. Pattern Recognition 37, 313–323 (2004)MATHCrossRefGoogle Scholar
  16. 16.
    Veltkamp, R.C., Tanase, M.: Content-Based Image Retrieval Systems: A Survey. Revised and extended version of Technical Report UU-CS-2000-34, Department of Computing Science, Utrecht University (2002)Google Scholar
  17. 17.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM: Self-Organizing Maps for Content-Based Image Retrieval. In: IEEE International Joint Conference on Neural Networks, pp. 2470–2473 (1999)Google Scholar
  18. 18.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  19. 19.
    Puzicha, J., Rubner, Y., Tomasi, C., Buhmann, J.M.: Empirical Evaluation of Dissimilarity Measures for Color and Texture. In: Seventh IEEE International Conference on Computer Vision, pp. 1165–1172 (1999)Google Scholar
  20. 20.
    Corel Corporation (2005), http://www.corel.com/
  21. 21.
    Park, D.K., Jeon, Y.S., Won, C.S.: Efficient Use of Local Edge Histogram Descriptor. In: 2000 ACM workshop on Standards, Interoperability and Practices, pp. 52–54 (2000)Google Scholar
  22. 22.
    Takala, V.: Local Binary Pattern Method in Context-Based Image Retrieval. Master’s thesis, Department of Electrical and Information Engineering, University of Oulu (2004) (in Finnish)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Valtteri Takala
    • 1
  • Timo Ahonen
    • 1
  • Matti Pietikäinen
    • 1
  1. 1.Machine Vision Group, Infotech OuluUniversity of OuluFinland

Personalised recommendations