Building Detection from Mobile Imagery Using Informative SIFT Descriptors

  • Gerald Fritz
  • Christin Seifert
  • Manish Kumar
  • Lucas Paletta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


We propose reliable outdoor object detection on mobile phone imagery from off-the-shelf devices. With the goal to provide both robust object detection and reduction of computational complexity for situated interpretation of urban imagery, we propose to apply the ’Informative Descriptor Approach’ on SIFT features (i-SIFT descriptors). We learn an attentive matching of i-SIFT keypoints, resulting in a significant improvement of state-of-the-art SIFT descriptor based keypoint matching. In the off-line learning stage, firstly, standard SIFT responses are evaluated using an information theoretic quality criterion with respect to object semantics, rejecting features with insufficient conditional entropy measure, producing both sparse and discriminative object representations. Secondly, we learn a decision tree from the training data set that maps SIFT descriptors to entropy values. The key advantages of informative SIFT (i-SIFT) to standard SIFT encoding are argued from observations on performance complexity, and demonstrated in a typical outdoor mobile vision experiment on the MPG-20 reference database.


Object Recognition Object Detection Object Representation Scale Invariant Feature Transform Local Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–271 (2003)Google Scholar
  2. 2.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software 3(3), 209–226 (1977)zbMATHCrossRefGoogle Scholar
  3. 3.
    Fritz, G., Paletta, L., Bischof, H.: Object recognition using local information content. In: Proc. International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, vol. II, pp. 15–18 (2004)Google Scholar
  4. 4.
    Hall, D., Leibe, B., Schiele, B.: Saliency of interest points under scale changes. In: Proc. British Machine Vision Conference, BMVC 2002, Cardiff, UK (2002)Google Scholar
  5. 5.
    Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: Proc. Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, vol. 2, pp. 506–513 (2004)Google Scholar
  6. 6.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors (2004),
  9. 9.
    Obdrzalek, S., Matas, J.: Object recognition using local affine frames on distinguished regions. In: Proc. British Machine Vision Conference, pp. 113–122 (2002)Google Scholar
  10. 10.
    Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  11. 11.
    Vidal-Naquet, M., Ullman, S.: Object recognition with informative features and linear classication. In: Proc. International Conference on Computer Vision, ICCV 2003, Nice, France, pp. 281–288 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gerald Fritz
    • 1
  • Christin Seifert
    • 1
  • Manish Kumar
    • 1
  • Lucas Paletta
    • 1
  1. 1.Institute of Digital Image ProcessingJOANNEUM RESEARCH Forschungsgesellschaft mbHGrazAustria

Personalised recommendations