Overlapping Constraint for Variational Surface Reconstruction

  • Henrik Aanæs
  • Jan Erik Solem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


In this paper a counter example, illustrating a shortcoming in most variational formulations for 3D surface estimation, is presented. The nature of this shortcoming is a lack of an overlapping constraint. A remedy for this shortcoming is presented in the form of a penalty function with an analysis of the effects of this function on surface motion. For practical purposes, this will only have minor influence on current methods. However, the insight provided in the analysis is likely to influence future developments in the field of variational surface reconstruction.


  1. 1.
    Faugeras, O., Keriven, R.: Complete dense stereovision using level set methods. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 379–393. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Faugeras, O., Keriven, R.: Variational principles, surface evolution, pdes, level set methods, and the stereo problem. IEEE Transactions on Image Processing, 7, 336–344 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Jin, H., Yezzi, A., Soatto, S.: Variational multiframe stereo in the presence of specular reflections. Technical Report TR01-0017, UCLA (2001)Google Scholar
  4. 4.
    Jin, H., Soatto, S., Yezzi, A.: Multi-view stereo beyond lambert. Computer Vision and Pattern Recognition. In: IEEE Computer Society Conference on Proceedings 2003, vol. 1, pp. 171–178 (2003)Google Scholar
  5. 5.
    Yezzi, A., Soatto, S.: Structure from motion for scenes without features. Computer Vision and Pattern Recognition. In: IEEE Computer Society Conference on Proceedings 2003, vol. 1, pp. 525–532 (2003)Google Scholar
  6. 6.
    Yezzi, A., Soatto, S.: Stereoscopic segmentation. International Journal of Computer Vision 53, 31–43 (2003)CrossRefGoogle Scholar
  7. 7.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry, The Edinburgh Building. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  8. 8.
    Cox, I., Higorani, S., Rao, S.B., Maggs, B.: A maximum likelihood stereo algorithm. Computer Vision and Image Understanding 63, 542–567 (1996)CrossRefGoogle Scholar
  9. 9.
    Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Computational Physics 127, 179–195 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Henrik Aanæs
    • 1
  • Jan Erik Solem
    • 2
  1. 1.Informatics and Mathematical ModellingTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Jan Erik Solem, School of Technology and SocietyMalmö UniversityMalmöSweden

Personalised recommendations