Image Analysis with Local Binary Patterns

  • Matti Pietikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

The local binary pattern approach has evolved to represent a significant breakthrough in texture analysis, outperforming earlier methods in many applications. Perhaps the most important property of the LBP operator in real-world applications is its tolerance against illumination changes. Another equally important is its computational simplicity, which makes it possible to analyze images in challenging real-time settings. Recently, we have begun to study image analysis tasks which have not been generally considered texture analysis problems. Our excellent results suggest that that texture and the ideas behind the LBP methodology could have a much wider role in image analysis and computer vision than was thought before.

References

  1. 1.
    Ojala, T., Pietikäinen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar
  2. 2.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  3. 3.
    Mäenpää, T., Pietikäinen, M.: Texture Analysis with Local Binary Patterns. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 197–216. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Pietikäinen, M., Nurmela, T., Mäenpää, T., Turtinen, M.: View-Based Recognition of Real-World Textures. Pattern Recognition 37, 313–323 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Turtinen, M., Pietikäinen, M.: Visual Training and Classification of Textured Scene Images. In: The 3rd International Workshop on Texture Analysis and Synthesis, pp. 101–106 (2003)Google Scholar
  7. 7.
    Turtinen, M., Pietikäinen, M.: Labeling of Textured Data with Co-Training and Active Learning. reviewGoogle Scholar
  8. 8.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Ahonen, T., Pietikäinen, M., Hadid, A., Mäenpää, T.: Face Recognition Based on the Appearance of Local Regions. In: 17th International Conference on Pattern Recognition, vol. III, pp. 153–156 (2004)Google Scholar
  10. 10.
    Hadid, A., Pietikäinen, M., Ahonen, T.: A Discriminative Feature Space for Detecting and Recognizing Faces. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 797–804 (2004)Google Scholar
  11. 11.
    Feng, X., Pietikäinen, M., Hadid, A.: Facial Expression Recognition with Local Binary Patterns and Linear Programming. Pattern Recognition and Image Analysis 15, 550–552 (2005)MATHGoogle Scholar
  12. 12.
    Feng, X., Hadid, A., Pietikäinen, M.: A Coarse-to-Fine Classification Scheme for Facial Expression Recognition. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 668–675. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Takala, V., Ahonen, T., Pietikäinen, M.: Block-Based Methods for Image Retrieval Using Local Binary Patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 882–891. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Heikkilä, M., Pietikäinen, M., Heikkilä, J.: A Texture-Based Method for Detecting Moving Objects. In: The 15th British Machine Vision Conference, vol. I, pp. 187–196 (2004)Google Scholar
  15. 15.
    Heikkilä, M., Pietikäinen, M.: A Texture-Based Method for Modeling the Background and Detecting Moving Objects. reviewGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Matti Pietikäinen
    • 1
  1. 1.Machine Vision Group, Infotech Oulu and Department of Electrical and Information EngineeringUniversity of OuluFinland

Personalised recommendations