Cerebrovascular Segmentation by Accurate Probabilistic Modeling of TOF-MRA Images

  • Ayman El-Baz
  • Aly Farag
  • Georgy Gimelfarb
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

We present a fast algorithm for automatic extraction of a 3D cerebrovascular system from time-of-flight (TOF) magnetic resonance angiography (MRA) data. Blood vessels are separated from background tissues (fat, bones, or grey and white brain matter) by voxel-wise classification based on precise approximation of a multi-modal empirical marginal intensity distribution of the TOF-MRA data. The approximation involves a linear combination of discrete Gaussians (LCDG) with alternating signs, and we modify the conventional Expectation-Maximization (EM) algorithm to deal with the LCDG. To validate the accuracy of our algorithm, a special 3D geometrical phantom motivated by statistical analysis of the MRA-TOF data is designed. Experiments with both the phantom and 50 real data sets confirm high accuracy of the proposed approach.

References

  1. 1.
    Health Resources. Patient Resources, Disorder of the Month. Cerebrovascular Disease. Neurosurgery: On-Call [serial online] (July 1999)Google Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Computer Vision 22, 61–79 (1997)MATHCrossRefGoogle Scholar
  3. 3.
    McInerney, T., Terzopoulos, D.: Medical image segmentation using topologically adaptable surface. In: Proc. CVRMED-MRCAS 1997, pp. 23–32 (1997)Google Scholar
  4. 4.
    Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R.: Curves: Curve evolution for vessel segmentation. Medical Image Analysis 5, 195–206 (2001)CrossRefGoogle Scholar
  5. 5.
    Wink, O., Niessen, W.J., Viergever, M.A.: Fast delineation and visualization of vessels in 3-D angiographic images. IEEE Trans. Med. Imaging 19, 337–346 (2000)CrossRefGoogle Scholar
  6. 6.
    Deschamps, T., Cohen, L.D.: Fast extraction of tubular and tree 3D surfaces with front propoagation methods. In: Proc. 16th ICPR, pp. 731–734 (2002)Google Scholar
  7. 7.
    Manniesing, R., Niessen, W.: Local speed functions in level set based vessel segmentation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 475–482. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Descotesux, M., Collins, L., Siddiqi, K.: Geometric flows for segmenting vasulature in MRI: Theory and validation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 500–507. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Wilson, D.L., Noble, J.A.: An adaptive segmentation algorithm for time-of-flight MRA data. IEEE Trans. Med. Imaging 18, 938–945 (1999)CrossRefGoogle Scholar
  10. 10.
    Nain, D., Yezzi, A., Turk, G.: Vessels segmentation using a shape driven flow. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 51–59. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Schlesinger, M.I., Hlavac, V.: Ten Lectures on Statistical and Structural Pattern Recognition. Kluwer Academic, Dordrecht (2002)MATHGoogle Scholar
  12. 12.
    Lamperti, J.W.: Probability. J.Wiley & Sons, New York (1996)MATHGoogle Scholar
  13. 13.
    Sabry, M., Sites, C.B., Farag, A.A., Hushek, S., Moriarty, T.: A Fast Automatic Method for 3D Volume Segmentation of the Human Cerebrovascular. In: Proc. of the 13th International Conf. on Computer Assisted Radiology and Surgery (CARS 2002), Paris, France, June 26-29, pp. 382–387 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ayman El-Baz
    • 1
  • Aly Farag
    • 1
  • Georgy Gimelfarb
    • 2
  1. 1.Computer Vision and Image Processing LaboratoryUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations