Restoration of Multitemporal Short-Exposure Astronomical Images

  • Michal Haindl
  • Stanislava Šimberová
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)

Abstract

A multitemporal fast adaptive recursive restoration method based on the underlying spatial probabilistic image model is presented. The method assumes linear degradation model with the unknown possibly non-homogeneous point-spread function and additive noise. Pixels in the vicinity of image steep discontinuities are left unrestored to minimize restoration blurring effect. The method is applied for astronomical sunspot image restoration, where for every ideal undegraded unobservable image several degraded observed images are available.

Keywords

Image Restoration Markov Chain Monte Carlo Method Solar Image Blind Deconvolution Image Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fried, D.: J. Opt. Soc. Am.  56 (1966)Google Scholar
  2. 2.
    Roddier, F.: In: Wolf, E. (ed.) Progress in Optics, vol. XIX. Nort-Holland, Amsterdam (1981)Google Scholar
  3. 3.
    Schulz, T.: Multiframe blind deconvolution of astronomical images. J. Opt. Soc. Am. A 10, 1064–1073 (1993)CrossRefGoogle Scholar
  4. 4.
    Perona, P.: Deformable kernels for early vision. IEEE Trans. Pattern Anal. Mach. Int. 17, 488–489 (1995)CrossRefGoogle Scholar
  5. 5.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Int. 12, 629–639 (1990)CrossRefGoogle Scholar
  6. 6.
    Fischl, B., Schwartz, E.: Learning an integral equation approximation to nonlinear anisotropic diffusion in image processing. IEEE Trans. Pattern Anal. Mach. Int. 19, 342–352 (1997)CrossRefGoogle Scholar
  7. 7.
    Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Int. 16, 826–833 (1992)CrossRefGoogle Scholar
  8. 8.
    Andrews, H.C., Hunt, B.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977)Google Scholar
  9. 9.
    Hunt, B.: The application of constraint least square estimation to image restoration by digital computer. IEEE Trans. Computers 22, 805–812 (1973)CrossRefGoogle Scholar
  10. 10.
    Chellappa, R., Kashyap, R.: Digital image restoration using spatial interaction models. IEEE Trans. Acoustics, Speeech and Sig. Proc. 30, 284–295 (1982)Google Scholar
  11. 11.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions and bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Int. 6, 721–741 (1984)MATHCrossRefGoogle Scholar
  12. 12.
    Geman, D.: Random fields and inverse problems in imaging. Springer, Berlin (1990)Google Scholar
  13. 13.
    Jeffs, B., Pun, W.: Simple shape parameter estimation from blurred observations for a generalized gaussian mrf image prior used in map restoration. In: Proc. IEEE CVPR Conf., San Francisco, pp. 465–468. IEEE, Los Alamitos (1996)Google Scholar
  14. 14.
    Lagendijk, R., Biemond, J., Boekee, D.: Identification and restoration of noisy blurred images using the expectation-maximization algorithm. IEEE Trans. on Acoust., Speech, Signal Processing 38, 1180–1191 (1990)MATHCrossRefGoogle Scholar
  15. 15.
    Haindl, M.: Recursive model-based image restoration. In: Sanfeliu, A., Villanueva, J., Vanrell, M., Alquezar, R., Huang, T., Serra, J. (eds.) Proceedings of the 15th IAPR Int. Conf. on Pattern Recognition, vol. III, pp. 346–349. IEEE Press, Los Alamitos (2000)Google Scholar
  16. 16.
    Haindl, M.: Recursive model-based colour image restoration. In: Caelli, T., Amin, A., Duin, R.P.W. (eds.) Proceedings of Structural, Syntactic, and Statistical Pattern Recognition, pp. 617–626. Springer, Berlin (2002)CrossRefGoogle Scholar
  17. 17.
    Haindl, M., Šimberová, S.: A high - resolution radiospectrograph image reconstruction method. Astronomy and Astrophysics. Suppl.Ser. 115, 189–193 (1996)Google Scholar
  18. 18.
    Haindl, M., Šimberová, S.: A scratch removal method. Kybernetika 34, 423–428 (1998)Google Scholar
  19. 19.
    Subbarao, M., Choi, T., Nikzad, A.: Focusing techniques. J. Optical Eng. 32, 2824–2836 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michal Haindl
    • 1
  • Stanislava Šimberová
    • 2
  1. 1.Institute of Information Theory and AutomationAcademy of Sciences CRPragueCzech Republic
  2. 2.Astronomical Institute Academy of Sciences CROndřejovCzech Republic

Personalised recommendations