Advertisement

Threshold Behaviour of WalkSAT and Focused Metropolis Search on Random 3-Satisfiability

  • Sakari Seitz
  • Mikko Alava
  • Pekka Orponen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)

Abstract

An important heuristic in local search algorithms for Satisfiability is focusing, i.e. restricting the selection of flipped variables to those appearing in presently unsatisfied clauses. We consider the behaviour on large randomly generated 3-SAT instances of two focused solution methods: WalkSAT and Focused Metropolis Search. The algorithms turn out to have qualitatively quite similar behaviour. Both are sensitive to the proper choice of their “noise” and “temperature” parameters, but with appropriately chosen values, both achieve solution times that scale linearly in the number of variables even for clauses-to-variables ratios α > 4.2. This is much closer to the satisfiability transition threshold α c ≈ 4.267 than has generally been assumed possible for local search algorithms.

Keywords

Local Search Solution Time Local Search Algorithm Local Search Method Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurell, E., Gordon, U., Kirkpatrick, S.: Comparing beliefs, surveys and random walks. In: NIPS 2004 (2004), arXiv.org: cond-mat/0406217Google Scholar
  2. 2.
    Barthel, W., Hartmann, A.K., Weigt, M.: Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms. Phys. Rev. E 67, 066104 (2003)CrossRefGoogle Scholar
  3. 3.
    Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability, arXiv.org:cs.CC/0212002Google Scholar
  4. 4.
    Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104, 86–92 (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: AAAI 2002, pp. 655–660 (2002)Google Scholar
  6. 6.
    Hoos, H.H., Stützle, T.: Towards a characterisation of the behaviour of stochastic local search algorithms for SAT. Artif. Intell. 112, 213–232 (1999)zbMATHCrossRefGoogle Scholar
  7. 7.
    Jia, H., Moore, C., Selman, B.: From spin glasses to hard satisfiable formulas. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 199–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: AAAI 1997, pp. 321–326 (1997)Google Scholar
  9. 9.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  10. 10.
    Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: AAAI 1992, pp. 459–465 (1992)Google Scholar
  11. 11.
    Papadimitriou, C.: On selecting a satisfying truth assignment. In: FOCS 1991, pp. 163–169 (1991)Google Scholar
  12. 12.
    Parisi, G.: On local equilibrium equations for clustering states, arXiv.org:cs.CC/0212047Google Scholar
  13. 13.
    Parkes, A.J.: Distributed local search, phase transitions, and polylog time. In: Proc. Workshop on Stochastic Search Algorithms, IJCAI 2001 (2001)Google Scholar
  14. 14.
    Parkes, A.J.: Scaling properties of pure random walk on random 3-SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 708–713. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Seitz, S., Orponen, P.: An efficient local search method for random 3-satisfiability. In: Workshop on Typical Case Complexity and Phase Transitions, LICS 2003. Electronic Notes in Discrete Mathematics, vol. 16. Elsevier, Amsterdam (2003)Google Scholar
  16. 16.
    Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability, arXiv.org:cond-mat/0501707Google Scholar
  17. 17.
    Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Cliques, Coloring, and Satisfiability. AMS DIMACS Series, vol. 26, pp. 521–532 (1996)Google Scholar
  18. 18.
    Semerjian, G., Monasson, R.: Relaxation and metastability in a local search procedure for the random satisfiability problem. Phys. Rev. E 67, 066103 (2003)CrossRefGoogle Scholar
  19. 19.
    Semerjian, G., Monasson, R.: A study of Pure Random Walk on random satisfiability problems with “physical” methods. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 120–134. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Wei, W., Selman, B.: Accelerating random walks. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 216–232. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sakari Seitz
    • 1
    • 2
  • Mikko Alava
    • 2
  • Pekka Orponen
    • 1
  1. 1.Laboratory for Theoret. Computer Science
  2. 2.Laboratory of PhysicsHelsinki University of TechnologyFinland

Personalised recommendations