Advertisement

An Improved Upper Bound for SAT

  • Evgeny Dantsin
  • Alexander Wolpert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)

Abstract

We give a randomized algorithm for testing satisfiability of Boolean formulas in conjunctive normal form with no restriction on clause length. Its running time is at most 2 n(1 − 1/α) up to a polynomial factor, where α = ln (m/n) + O(ln ln m) and n, m are respectively the number of variables and the number of clauses in the input formula. This bound is asymptotically better than the previously best known 2 n(1 − 1/log(2m)) bound for SAT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brueggemann, T., Kern, W.: An improved local search algorithm for 3-SAT. Theoretical Computer Science 329(1-3), 303–313 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dantsin, E., Hirsch, E.A., Wolpert, A.: Algorithms for SAT based on search in Hamming balls. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 141–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Dantsin, E., Wolpert, A.: Derandomization of Schuler’s algorithm for SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 69–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Dantsin, E., Wolpert, A.: An improved upper bound for SAT. Electronic Colloquium on Computational Complexity, Report TR05-030 (March 2005)Google Scholar
  6. 6.
    Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, January 2004, p. 328 (2004); A preliminary version appeared in Electronic Colloquium on Computational Complexity, Report No. 53 (July 2003)Google Scholar
  7. 7.
    Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1998, pp. 628–637 (1998)Google Scholar
  8. 8.
    Paturi, R., Pudlák, P., Zane, F.: Satisfiability coding lemma. In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1997, pp. 566–574 (1997)Google Scholar
  9. 9.
    Pudlák, P.: Satisfiability – algorithms and logic. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 129–141. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1999, pp. 410–414 (1999)Google Scholar
  11. 11.
    Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica 32(4), 615–623 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. Journal of Algorithms 54(1), 40–44 (2005); A preliminary version appeared as a technical report in 2003zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Evgeny Dantsin
    • 1
  • Alexander Wolpert
    • 1
  1. 1.Roosevelt UniversityChicagoUSA

Personalised recommendations