Advertisement

Substitutional Definition of Satisfiability in Classical Propositional Logic

  • Anton Belov
  • Zbigniew Stachniak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)

Abstract

The syntactic framework of the so-called saturated substitutions is defined and used to obtain new characterizations of SAT as well as the classes of minimal and maximal models of formulas of classical propositional logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Z., Toda, S.: The complexity of selecting maximal solutions. Information and Computation 119, 231–239 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kautz, H., Selman, B.: Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search. In: Proc. of AAAI 1996 (1996)Google Scholar
  3. 3.
    Dantsin, E., Hirsch, E.A., Wolper, A.: Algorithms for SAT based on Search in Hamming Balls. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 141–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Kavvadias, D.J., Stavropoulos, E.C.: An algorithm for generating all maximal models of Boolean expressions. In: Proc. of the 4th Panhellenic Logic Symposium, pp. 125–129 (2003)Google Scholar
  5. 5.
    Khardon, R., Roth, D.: Reasoning with Models. Artificial Intelligence 87, 187–213 (1996)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Khardon, R., Roth, D.: Default-reasoning with Models. In: Proc. of IJCAI 1995, pp. 319–325 (1995)Google Scholar
  7. 7.
    Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability problems. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 407–418. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    de Kleer, J., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems. Artificial Intelligence 56, 197–222 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Paturi, R., Pudlák, P., Zane, F.: Satisfiability Coding Lemma. In: Proc. of FOCS 1997, pp. 566–574 (1997)Google Scholar
  10. 10.
    Selman, B., Kautz, H.A.: Model-preference default theories. Artificial Intelligence 45, 287–322 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Selman, B., Kautz, H., Cohen, B.: Noise Strategies for Local Search. In: Proc. of AAAI 1994, pp. 337–343 (1994)Google Scholar
  12. 12.
    Smith, A., Veneris, A., Viglas, A.: Design Diagnosis Using Boolean Satisfiability. In: IEEE Asian-South Pacific Design Automation Conference (2004)Google Scholar
  13. 13.
    Stachniak, Z.: Exploiting Polarity in Multiple-Valued Inference Systems. In: Proc. of the 31st IEEE Int. Symp. on Multiple-Valued Logic, pp. 149–156 (2001)Google Scholar
  14. 14.
    Stachniak, Z.: Going Non-clausal. In: Proc. of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing, SAT 2002, pp. 316–322 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anton Belov
    • 1
  • Zbigniew Stachniak
    • 1
  1. 1.Department of Computer Science and EngineeringYork UniversityTorontoCanada

Personalised recommendations