Advertisement

Resolution Tunnels for Improved SAT Solver Performance

  • Michal Kouril
  • John Franco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3569)

Abstract

We show how to aggressively add uninferred constraints, in a controlled manner, to formulae for finding Van der Waerden numbers during search. We show that doing so can improve the performance of standard SAT solvers on these formulae by orders of magnitude. We obtain a new and much greater lower bound for one of the Van der Waerden numbers, specifically a bound of 1132 for W(2,6). We believe this bound to actually be the number we seek. The structure of propositional formulae for solving Van der Waerden numbers is similar to that of formulae arising from Bounded Model Checking. Therefore, we view this as a preliminary investigation into solving hard formulae in the area of Formal Verification.

Keywords

Arithmetic Progression Binary Decision Diagram Bound Model Check Search Depth Search Breadth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27(6), 509–516 (1978)zbMATHCrossRefGoogle Scholar
  2. 2.
    Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Proc. 37th Annual Symposium on Foundations of Computer Science, pp. 274–282 (1996)Google Scholar
  3. 3.
    Beame, P., Karp, R.M., Pitassi, T., Saks, M.: On the complexity of unsatisfiability proofs for random k-CNF formulas. In: Proc. 30th Annual Symposium on the Theory of Computing, pp. 561–571 (1998)Google Scholar
  4. 4.
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the Association for Computing Machinery 48, 149–169 (2001)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Brace, K.S., Rudell, R.R., Bryant, R.E.: Efficient implementation of a BDD package. In: Proc. 27th ACM/IEEE Design Automation Conf., pp. 40–45 (1990)Google Scholar
  6. 6.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp. C-35(8), 677–691 (1986)zbMATHCrossRefGoogle Scholar
  7. 7.
    Burch, J., Clark, E., Long, D.: Symbolic model checking with partitioned transitions relations. In: Halaas, A., Denyer, P.B. (eds.) Intnl. Conf. on VLSI. IFIP Transactions, pp. 49–58. North-Holland, Amsterdam (1991)Google Scholar
  8. 8.
    Chvátal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the Association for Computing Machinery 35, 759–768 (1988)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Cooke, M.: Van der Waerden numbers, Available from http://home.comcast.net/~rm_cooke/vdw.html
  10. 10.
    Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Communications of the Association of Computing Machinery 5, 394–397 (1962)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Dransfield, M.R., Liu, L., Marek, V., Truszczynski, M.: Using Answer-Set Programming to study van der Waerden numbers. Logic and Artificial Intelligence Laboratory, Computer Science Department, College of Enginnering, University of Kentucky (September 2004), Available from http://cs.engr.uky.edu/ai/vdw/
  12. 12.
    Dransfield, M., Bryant, R.E.: Using ordered binary decision diagrams to solve highly structured satisfiability problems. Unpublished technical report CMU-CS-1996, Carnegie Mellon University (1996)Google Scholar
  13. 13.
    Galil, Z.: On resolution with clauses of bounded size. SIAM Journal on Computing 6, 444–459 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for SAT. In: Proc. 11th National Conference on Artificial Intelligence, pp. 28–33 (1993)Google Scholar
  15. 15.
    Groote, J.F.: Hiding propositional constants in BDDs. Logic Group Preprint Series 120, Utrecht University (1994)Google Scholar
  16. 16.
    Gu, J.: Efficient local search for very large-scale satisfiability problems. ACM SIGART Bulletin 3(1), 8–12 (1992)CrossRefGoogle Scholar
  17. 17.
    Gu, J., Purdom, P.W., Franco, J., Wah, J.: Algorithms for the Satisfiability problem: a survey. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 35, pp. 19–151 (1997)Google Scholar
  18. 18.
    Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell System Technical Journal 38, 985–999 (1959)MathSciNetGoogle Scholar
  20. 20.
    McAllester, D., Selman, B., Kautz, H.A.: Evidence for invariants in local search. In: Proc. International Joint Conference on Artificial Intelligence, pp. 321–326 (1997)Google Scholar
  21. 21.
    Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Applied Mathematics 10, 117–133 (1983)MathSciNetGoogle Scholar
  22. 22.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)zbMATHCrossRefGoogle Scholar
  23. 23.
    Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    San Miguel Aguirre, A., Vardi, M.Y.: Random 3-SAT and BDDs: The plot thickens further. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 121–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proc. 12th National Conference on Artificial Intelligence, pp. 337–343 (1994)Google Scholar
  26. 26.
    Somenzi, F.: Colorado University Decision Diagram package, Available from http://vlsi.colorado.edu/~fabio/CUDD/
  27. 27.
    Song, H.Y., Golomb, S.W., Taylor, H.: Progressions in Every Two-coloration of Z n. Journal of Combinatorial Theory, Series A 61(2), 211–221 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Rabung, J.R.: Some Progression-Free Partitions Constructed Using Folkman’s Method. Canadian Mathematical Bulletin 22(1), 87–91 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Urquhart, A.: Hard examples for resolution. Journal of the Association for Computing Machinery 34, 209–219 (1987)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Van der Waerden, B.L.: Beweis einer Baudetschen Veermutung. Nieuw Archief voor Wiskunde 15, 212–216 (1927)Google Scholar
  31. 31.
    Weaver, S.A., Franco, J., Schlipf, J.S.: Extending Existential Quantification in Conjunctions of BDDs. University of Cincinnati Technical ReportGoogle Scholar
  32. 32.
    Weisstein, E.W., et al.: van der Waerden Number, From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/vanderWaerdenNumber.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michal Kouril
    • 1
  • John Franco
    • 1
  1. 1.University of CincinnatiCincinnatiUSA

Personalised recommendations