Approximate Min-max Relations for Odd Cycles in Planar Graphs

  • Samuel Fiorini
  • Nadia Hardy
  • Bruce Reed
  • Adrian Vetta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3509)

Abstract

We study the ratio between the minimum size of an odd cycle vertex transversal and the maximum size of a collection of vertex-disjoint odd cycles in a planar graph. We show that this ratio is at most 10. For the corresponding edge version of this problem, Král and Voss [7] recently proved that this ratio is at most 2; we also give a short proof of their result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appel, K., Haken, W.: A proof of the four color theorem. Discrete Mathematics 16, 179–180 (1976)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, New-York (2000)Google Scholar
  3. 3.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 161–166 (1950)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Frank, A.: A survey on T-joins, T-cuts, and conservative weightings. In Combinatorics, Paul Erdös is eighty, 2, Keszthely (1993), vol. 2 of Bolyai Society Mathematical Studies, pp. 213–252. János Bolyai Mathematical Society, Budapest (1996)Google Scholar
  5. 5.
    Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feedback problems in planar graphs. Combinatorica 18, 37–59 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on Computing 4, 221–225 (1975)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Král, D., Voss, H.: Edge-disjoint odd cycles in planar graphs. Journal of Combinatorial Theory, Series B 90, 107–120 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lovász, L.: 2-matchings and 2-covers of hypergraphs. Acta Mathematica Academiae Scientiarum Hungaricae 26, 433–444 (1975)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rautenbach, D., Reed, B.: The Erdős-Pósa property for odd cycles in highly connected graphs. Combinatorica 21, 267–278 (2001); Paul Erdős and his mathematics (Budapest, 1999) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Reed, B.: On mangoes and blueberries. Combinatorica 19, 267–296 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four colour theorem. Journal of Combinatorial Theory, Series B 70, 2–44 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Heidelberg (2003)MATHGoogle Scholar
  13. 13.
    Seymour, P.: On odd cuts and plane multicommodity flows. Proceedings of the London Mathematical Society (Third Series) 42, 178–192 (1981)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Seymour, P.: Packing directed circuits fractionally. Combinatorica 15, 281–288 (1995)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Thomassen, C.: On the presence of disjoint subgraphs of a specified type. Journal of Graph Theory 12, 101–111 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Samuel Fiorini
    • 1
    • 2
  • Nadia Hardy
    • 3
  • Bruce Reed
    • 3
  • Adrian Vetta
    • 3
  1. 1.GERADMontreal, QuebecCanada
  2. 2.Université Libre de BruxellesBrusselsBelgium
  3. 3.McGill UniversityMontreal, QuebecCanada

Personalised recommendations