Provably Secure Double-Block-Length Hash Functions in a Black-Box Model

  • Shoichi Hirose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3506)

Abstract

In CRYPTO’89, Merkle presented three double-block-length hash functions based on DES. They are optimally collision resistant in a black-box model, that is, the time complexity of any collision-finding algorithm for them is Ω(2ℓ/2) if DES is a random block cipher, where ℓ is the output length. Their drawback is that their rates are low. In this article, new double-block-length hash functions with higher rates are presented which are also optimally collision resistant in the black-box model. They are composed of block ciphers whose key length is twice larger than their block length.

Keywords

double-block-length hash function black-box model block cipher 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biham, E., Chen, R.: Near-collisions of SHA-0. Cryptology ePrint Archive, Report 2004/146 (2004), http://eprint.iacr.org/
  2. 2.
    Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly efficient blockcipher-based hash functions. Cryptology ePrint Archive, Report 2004/062 (2004), http://eprint.iacr.org/
  3. 3.
    Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Brachtl, B.O., Coppersmith, D., Hyden, M.M., Matyas Jr., S.M., Meyer, C.H.W., Oseas, J., Pilpel, S., Schilling, M.: Data authentication using modification detection codes based on a public one-way encryption function, U. S. Patent # 4,908,861 (March 1990)Google Scholar
  5. 5.
    Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Hattori, M., Hirose, S., Yoshida, S.: Analysis of double block length hash functions. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of iterated hash functions based on block ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Knudsen, L., Preneel, B.: Hash functions based on block ciphers and quaternary codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 77–90. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Knudsen, L., Preneel, B.: Fast and secure hashing based on codes. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Knudsen, L., Preneel, B.: Construction of secure and fast hash functions using nonbinary error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Knudsen, L.R., Lai, X., Preneel, B.: Attacks on fast double block length hash functions. Journal of Cryptology 11(1), 59–72 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  13. 13.
    Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  15. 15.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Satoh, T., Haga, M., Kurosawa, K.: Towards secure and fast hash functions. IEICE Transactions on Fundamentals E82-A(1), 55–62 (1999)Google Scholar
  18. 18.
    Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199 (2004), http://eprint.iacr.org/
  19. 19.
    Winternitz, R.S.: A secure one-way hash function built from DES. In: IEEE Symposium on Security and Privacy, pp. 88–90 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shoichi Hirose
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations