A Fuzzy Identity-Based Temporal GIS for the Analysis of Geomorphometry Changes

  • Myriem Sriti
  • Remy Thibaud
  • Christophe Claramunt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3534)


Despite recent progress in the development of temporal Geographical Information Systems (GIS) there is still a lack of methodological integration with geophysical models oriented to the study of Earth changes. This paper introduces a temporal GIS modelling approach which complements a process-based geomorphological experimental apparatus that simulates erosion-sedimentation phenomena over a geological period of time. We combine a field-based with a discrete-based observation of forms and changes at different levels of abstraction. A fuzzy-based model of evolution is introduced and allows for an approximation of changes and processes. State transitions are fuzzy-valued and complemented by a quantitative analysis of change patterns.


Digital Elevation Model Geographical Information System Geomorphological Process Identity Relationship Geographical Information System Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anselin, L., Getis, A.: Spatial statistical analysis and geographic information systems. The Annals of Regional Science 26, 19–33 (1992)CrossRefGoogle Scholar
  2. 2.
    Band, L.E.: Spatial hydrography and landforms. In: Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographical Information Systems, 2nd edn., pp. 527–542. Wiley, London (1999)Google Scholar
  3. 3.
    Beller, A.: Spatial-temporal events in GIS. In: Proceedings of GIS/LIS 1991, vol. 57(4), pp. 407–411 (1991)Google Scholar
  4. 4.
    Beven, K.J., Wood, E.F.: Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology 65, 139–158 (1983)CrossRefGoogle Scholar
  5. 5.
    Billen, R., Zlatanova, S.: 3D spatial relationships model: a useful concept for 2D cadastre? Computers, Environment and Urban Systems 27, 411–425 (2003)CrossRefGoogle Scholar
  6. 6.
    Bishop, I.D., Karadaglis, C.: Linking modelling and visualisation for natural resources management. Environmental and Planning B: Planning and Design 24(3), 345–358 (1997)CrossRefGoogle Scholar
  7. 7.
    Breunig, M.: An approach to the integration of spatial data and systems for a 3D geoinformation system. Computer and Geosciences 25, 39–48 (1999)CrossRefGoogle Scholar
  8. 8.
    Burrough, P.A.: Dynamic modelling and geocomputation. In: Longley, P., Brooks, S., McDonnell and McMillan, R. (eds.) Geocomputation: A Primer, pp. 165–191. John Wiley & Sons, New York (1998)Google Scholar
  9. 9.
    Chapman, G.P.: Human and Environmental Systems: A Geographer’s Appraisal. Academic Press, London (1977)Google Scholar
  10. 10.
    Claramunt, C., Thériault, M.: Managing time in GIS: An event-oriented approach. In: Clifford, J., Tuzhilin, A. (eds.) Recent Advances on Temporal Databases, pp. 21–43. Springer, Zurich (1995)Google Scholar
  11. 11.
    Claramunt, C., Thériault, M.: Toward semantics for modelling spatio-temporal processes within GIS. In: Kraak, M.J., Molenaar, M. (eds.) Advances in GIS Research, Delft, pp. 47–63. Taylor & Francis, Abington (1996)Google Scholar
  12. 12.
    Clarke, R.T.: A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19, 1–20 (1973)CrossRefGoogle Scholar
  13. 13.
    Crave, A., Lague, D., Davy, P., Kermarrec, P., Sokoutis, J.: Analog modelling of relief dynamic. Physics and Chemistry of the Earth 25, 549–553 (2000)CrossRefGoogle Scholar
  14. 14.
    Czirok, A., Somfai, E., Vicsek, T.: Experimental evidence for sel-affine roughning in a micro-model of geomorphological evolution. Physical review Letters 71, 2154–2157 (1993)CrossRefGoogle Scholar
  15. 15.
    De la Losa, A., Cervelle, B.: 3D topological modelling and visualisation for 3D GIS. Computers & Graphics 23, 469–478 (1999)CrossRefGoogle Scholar
  16. 16.
    Fisher, P., Wood, J., Cheng, T.: Where is helvellyn? Fuzziness of multi-scale landscape morphometry. Transactions of the Institute of British Geographers 29, 106–128 (2004)CrossRefGoogle Scholar
  17. 17.
    Goodchild, M.F., Steyaert, L.T., Parks, B.O. (eds.): GIS and Environmental Modelling: Progress and Research Issues, Fort Collins. GIS World Books (1996)Google Scholar
  18. 18.
    Hornsby, K., Egenhofer, M.: Qualitative representation of change. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 15–33. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Koshafian, S., Copeland, G.: Object identity. SIGPLAN Notices 21, 406–416 (1986)CrossRefGoogle Scholar
  20. 20.
    Langran, G.: States, events and evidence: the principle entities of a temporal GIS. In: Proceedings of GIS/LIS 1992, pp. 416–425 (1992)Google Scholar
  21. 21.
    Maidment, D.R., Djokic, D. (eds.): Hydrologic and Hydraulic Modeling Support with GIS, p. 216. ESRI Press, Redlands CA (2000)Google Scholar
  22. 22.
    Mark, D.M., Aronson, P.B.: Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation with applications in geomorphology and computer mapping. Mathematical Geology 16(7), 671–683 (1984)CrossRefGoogle Scholar
  23. 23.
    Marschallinger, R.: A voxel visualisation and analysis system based on Autocad. Computer and Geosciences 22, 379–386 (1996)CrossRefGoogle Scholar
  24. 24.
    Matsumoto, S., Raghavan, V., Yonezawa, G., Nemoto, T., Shiono, K.: Construction and visualisation of a three dimensional geologic model using GRASS GIS. Transactions and GIS 8(2), 211–223 (2004)CrossRefGoogle Scholar
  25. 25.
    Mendonça, L., Claramunt, C.: An integrated landscape and local analysis of land cover evolution in an alluvial zone. In: Computer Environment and Urban Systems, vol. 25(6), pp. 557–577. Pergamon, Oxford (2001)Google Scholar
  26. 26.
    Mitasova, H., Mitas, L., Brown, W., Gerdes, D., Kosinovsky, I., Baker, T.: Modeling spatially and temporally distributed phenomena: new methods and tools for GRASS GIS. International Journal of GIS 9(4), 433–446 (1995)Google Scholar
  27. 27.
    Molenaar, M., Cheng, T.: Fuzzy spatial objects and their dynamics. ISPRS Journal of Photogrammetry and Remote Sensing 55, 164–175 (2000)CrossRefGoogle Scholar
  28. 28.
    Montgomery, D.R., Balco, G., Willet, S.D.: Climate, tectonics and the morphology of the Andes. Geology 29, 579–582 (2001)CrossRefGoogle Scholar
  29. 29.
    Nunes, J.: Geographic space as a set of concrete geographical entities. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspect of Geographical Space, pp. 9–33. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  30. 30.
    O’Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., De Angelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H., Graham, R.L.: Indices of landscape pattern. Landscape Ecology 1(13), 153–162 (1988)CrossRefGoogle Scholar
  31. 31.
    Peuquet, D.J.: It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of American Geographers 84(3), 441–461 (1994)CrossRefGoogle Scholar
  32. 32.
    Peuquet, D.J.: Making space for time: Issues in space-time data representations. Geoinformatica 5(1), 11–32 (2001)zbMATHCrossRefGoogle Scholar
  33. 33.
    Pike, R.J.: A Bibliography of Geomorphology, United States Geological Survey Open File Report 93-262-1, Menlo Park, CA (1993)Google Scholar
  34. 34.
    Rhoads, B.L., Thorn, C.E.: The scientific nature of geomorphology. In: Proceedings of the 27th Binghantom Symposium in Geomorphology. John Wiley & Sons, Chichester (1996)Google Scholar
  35. 35.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  36. 36.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana IL (1949)zbMATHGoogle Scholar
  37. 37.
    Shi, W., Yang, B., Li, Q.: An object-oriented data model for complex objects in three-dimensional GIS. International Journal of GIS 17(5), 411–430 (2003)Google Scholar
  38. 38.
    Smith, B.: Fiat Objects. In: Guarino, N., Vieu, L., Pribbenow, S. (eds.) Parts and wholes: conceptual part-whole relations and formal mereology. In Proceedings of the 11th European Conference on Artificial Intelligence, Amsterdam, pp. 15–23 (1994)Google Scholar
  39. 39.
    Smith, B., Mark, D.M.: Do mountains exist? Towards an ontology of landforms. Environment and Planning B: Planning and Design 30(3), 411–427 (2003)CrossRefGoogle Scholar
  40. 40.
    Srinivisan, R., Arnold, J.G.: Integration of a basin-scale water quality model with GIS. Water Resources Bulletin 30(3), 453–462 (1994)Google Scholar
  41. 41.
    Tse, R., Gold, C.: A proposed connectivity-based model for a 3-D cadastre. Computers, Environment and Urban Systems 27, 427–445 (2003)CrossRefGoogle Scholar
  42. 42.
    USDA-SCSNational Engineering Handbook, Section 4 – Hydrology, Washington D.C., USDA-SCS (1985)Google Scholar
  43. 43.
    Wittmann, R., Kautzky, T., Hübler, A., Lücher, E.: A simple experiment for the examination of dendritic river systems. Naturwissenschaften 78, 23–25 (1991)CrossRefGoogle Scholar
  44. 44.
    Wood, J.: The Geomorphological Characterisation of Digital Elevation Models, Unpublished PhD report, University of Leicester, UK (1996)Google Scholar
  45. 45.
    Worboys, M.: A unified model for spatial and temporal information. The Computer Journal 37(1), 26–34 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Myriem Sriti
    • 1
  • Remy Thibaud
    • 1
  • Christophe Claramunt
    • 1
  1. 1.Naval Academy Research Institute, Lanveoc-PoulmicBrest NavalFrance

Personalised recommendations