Advertisement

Short Signature and Universal Designated Verifier Signature Without Random Oracles

  • Rui Zhang
  • Jun Furukawa
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3531)

Abstract

We propose the first universal designated verifier signature (UDVS) scheme whose security can be proven without random oracles, whereas the security of all previously known UDVS schemes are proven only when random oracles are assumed. To achieve our goal, we present a new short signature scheme without random oracles, which is a variant of BB04 scheme [4]. We also give new security definitions to UDVS. We note that our weakest security definitions are even stronger than any of previously known security definitions: We allow adversaries to behave more adaptively in oracle accessing and we also consider adaptive chosen public key attacks. The security of our UDVS scheme is then proven according to the new security definitions.

Keywords

Signature Scheme Random Oracle Random Oracle Model Short Signature Digital Signature Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: andom Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM Conference on Computer and Communication Security, vol. 62-73 (1993) Google Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. In: STOC 1998, pp. 209–218. ACM Press, New York (1998)CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption. ACM Transactions on Information and System Security 3(3), 161–185 (2000)CrossRefGoogle Scholar
  8. 8.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  9. 9.
    Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hada, S., Tanaka, T.: On the Existence of 3-round Zero-Knowledge Protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Joux, A., Nguyen, K.: Separating Decisional Diffie-Hellman from Diffie-Hellman in Cryptographic Groups. Cryptology ePrint Archive, Report 2001/003 (2001), http://eprint.iacr.org/2001/003/
  14. 14.
    Mitsunari, S., Sakai, R., Kasahara, M.: A New Trator Tracing. IEICE Trans. Fundamentals E85A(2), 481–484 (2002)Google Scholar
  15. 15.
    Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier signatures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard schnorr/RSA signatures into universal designated-verifier signatures. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rui Zhang
    • 1
  • Jun Furukawa
    • 2
  • Hideki Imai
    • 1
  1. 1.The University of Tokyo 
  2. 2.NEC Corporation 

Personalised recommendations