Advertisement

Intelligent Database Distribution on a Grid Using Clustering

  • Valérie Fiolet
  • Bernard Toursel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3528)

Abstract

The increasing availability of clusters and grids of workstations allows to bring cheap and powerful ressources for distributed datamining. This paper deals with high performance search of association rules. It proposes to built an “intelligent” database fragmentation and distribution by using a prealable clustering step, a new method called Incremental clustering allows to execute this clustering step in an efficient distributed way.

Keywords

Grid parallel and distributed computing Data Mining clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A93]
    Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective. In: Special issue on learning and discovery in knowledge-based databases, vol. 5(6), pp. 914–925. IEEE, Los Alamitos (December 1993)Google Scholar
  2. [A94]
    Agrawal, R., Srikant, R.: Fast algorithms for mining associations rules in large databases. In: Proc. of VLDB 1994, pp. 478–499 (September 1994)Google Scholar
  3. [A98]
    Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining application. In: Proc. of the ACM Conf. on Management of Data, pp. 94–105 (1998)Google Scholar
  4. [F02]
    Fiolet, V., Toursel, B.: Distributed Data Mining. In: Proc. of the ISPDC 2002, pp. 349–365 (July 2002)Google Scholar
  5. [F65]
    Forgy, E.: Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics 21, 768 (1965)Google Scholar
  6. [F00]
    Forman, G., Zhang, B.: Distributed data clustering can be efficient and exact. In: SIGKDD explorations, vol. 2 (2000)Google Scholar
  7. [J99]
    Johnson, E., Kargupta, H.: Collective, hierarchical clustering from distributed, heterogenous data. In: Zaki, M.J., Ho, C.-T. (eds.) KDD 1999. LNCS (LNAI), vol. 1759, pp. 221–244. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. [M67]
    McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)Google Scholar
  9. [S63]
    Sokal, R., Sneath, P.: Numerical Taxonomy. Freeman, San Francisco (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Valérie Fiolet
    • 1
    • 2
  • Bernard Toursel
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de Lille (Upresa CNRS 8022)University of Lille 1Villeneuve D’ascq CedexFrance
  2. 2.Service InformatiqueUniversity of Mons-HainaultMonsBelgium

Personalised recommendations