Hybrid Computational Intelligence for Ambient Intelligent Environments

  • Giovanni Acampora
  • Vincenzo Loia
  • Michele Nappi
  • Stefano Ricciardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3528)

Abstract

This paper describes an agent-based ambient intelligence architecture able to deliver personalized services on the basis of physical and emotional user status captured from a set of biometric features. Abstract representation and management is achieved thanks to two markup languages, H2ML and FML, able to model behavioral as well as fuzzy control activities and to exploit distribution and concurrent computation in order to gain real-time performances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Z.: Computational Intelligence for decision support. CRC Press, Florida (2000)Google Scholar
  2. 2.
    Zimmermann, H.-J., Tselentis, G., van Someren, M., Dounias, M. (eds.): Advances in computation intelligence and learning: methods and applications. Kluwer Academic Publishers, Massachusetts (2002)Google Scholar
  3. 3.
    Chatterjee, S.: Sani: A seamless and non intrusive framework and agent for creating intelligent interactive homes. In: Proceedings of the 2nd Int. Conference on Autonomous Agents, pp. 436–440 (1998)Google Scholar
  4. 4.
    Mozer, M.: The neural network house: An environment that adapts to its Inhabitants. In: Proceedings of the 1998 AAAI Spring Symposium on Intelligent Environments, pp. 110–114 (1998)Google Scholar
  5. 5.
    Ying, H.: Fuzzy system technology: a brief overview. IEEE Circuits and Systems Society, CAS Magazines, 28–37 (2000)Google Scholar
  6. 6.
    Basten, T., Geilen, M.: Ambient Intelligence: Impact on Embedded System Design. In: de Groot, H. (ed.). Kluwer Academic Pub, Dordrecht (2003)Google Scholar
  7. 7.
    Acampora, G., Ippolito, L., Loia, V., Siano, P.: Achieving transparency and Adaptivity in Fuzzy Control Framework: an application to Power Transformers Predictive Overload System. In: Proceedings of FUZZ-IEEE 2004, vol. 1 (2004)Google Scholar
  8. 8.
    Acampora, G., Loia, V.: Fuzzy Control Interoperability for Adaptive Domotic Framework. In: Proceedings of IEEE International Conference on Industrial Informatics, pp. 184–189 (2004)Google Scholar
  9. 9.
    Acampora, G., Loia, V.: Fuzzy Control Interoperability for Adaptive Domotic Framework. Proceedings of FUZZ-IEEE 2005 (2005) (To be published)Google Scholar
  10. 10.
    Prendinger, H., Descamps, S., Ishizuka, M.: MPML:a markup language for controlling the behavior of life-like characters. Journal of Visual Languages and Computing 15, 183–203 (2004)CrossRefGoogle Scholar
  11. 11.
    Marriott, A., Stallo, J.: VHML-Uncertainties and problems, A discussion. In: Proceedings AAMAS-2002 Workshop on EmbodiedConversational Agents-Let’s Specify and Evaluate Them! (2002)Google Scholar
  12. 12.
    Arafa, Y., Kamyab, K., Kshirsagar, S., Magnenat-Thalmann, N., Guye-Vuilleme, A., Thalmann, D.: Two approaches to scripting character animation. In: Proceedings AAMAS 2002 Workshop on Embodied Conversational Agents-Let’s Specify and Evaluate Them! (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giovanni Acampora
    • 1
  • Vincenzo Loia
    • 1
  • Michele Nappi
    • 1
  • Stefano Ricciardi
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversitá degli Studi di SalernoFisciano(Salerno)Italy

Personalised recommendations