On Application of Neural Networks for S-Boxes Design

  • Piotr Kotlarz
  • Zbigniew Kotulski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3528)


In the paper a new schedule of S-boxes design is considered. We start from motivation from block cipher practice. Then, the most popular S-box design criteria are presented, especially a possibility of application of Boolean bent-functions. Finally, we propose integrating neural networks (playing a role of Boolean functions with appropriate properties) in the design process.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FIPS 46-3, Data Encryption Standard (DES), NIST (1999)Google Scholar
  2. 2.
    Kotulski, Z.: Construction of block ciphers: new possibilities (Polish). Mat. Stosow. 4(45), 1–24 (2003)MathSciNetGoogle Scholar
  3. 3.
    FIPS 197, Advanced Encryption Standard (AES). In: NIST 2001(2001)Google Scholar
  4. 4.
    GOST 28147-89, Cryptographic Protection for Data Processing Systems. Cryptographic Transformation Algorithm, Government Standard of the U.S.S.R. (1990)Google Scholar
  5. 5.
    Gan, L., Simmons, S., Tavares, S.: A new family of stream ciphers based on cascades small S-boxes. IEEE, Los Alamitos (1997)Google Scholar
  6. 6.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential Cryptanalysis of Data Encryption Standard. Springer, Berlin (1993)MATHGoogle Scholar
  8. 8.
    Adams, C.M., Tavares, S.E.: Designing S-boxes for Ciphers Resistant to Differential CryptanalysisGoogle Scholar
  9. 9.
    Horzyk, A., Tadeusiewicz, R.: Self-Optimizing Neural Networks. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 150–155. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Knudsen, L.R.: Practically Secure Feistel Ciphers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 211–222. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)Google Scholar
  12. 12.
    Mister, S., Adams, C.: Practical S-Box Design. In: Workshop on Selected Areas in Cryptography (SAC 1996) Workshop Record, pp. 61–76. Queens University (1996)Google Scholar
  13. 13.
    Adams, C.M., Tavares, S.E.: The Use of Bent Sequences do Achieve Higher Order Strict Criterion in S-Box Design TRTR 90-013 (January 1990)Google Scholar
  14. 14.
    Grocholewska-Czurylo, A.: Avalanche and propagation properties of random bent Boolean functions. In: Proc. RMCIS 2003, p. 9.3. Zegrze (2003)Google Scholar
  15. 15.
    Szmidt, J.: Cryptographic properties of the Boolean functions. In: Proceedings of the 5th National Conference on Cryptography ENIGMA 2001, Warsaw (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Piotr Kotlarz
    • 1
  • Zbigniew Kotulski
    • 2
  1. 1.Kazimierz Wielki UniversityBydgoszcz
  2. 2.Institute of Telecommunications of WUTInstitute of Fundamental Technological Research of the Polish Academy of SciencesWarsaw

Personalised recommendations