Advertisement

On Application of Neural Networks for S-Boxes Design

  • Piotr Kotlarz
  • Zbigniew Kotulski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3528)

Abstract

In the paper a new schedule of S-boxes design is considered. We start from motivation from block cipher practice. Then, the most popular S-box design criteria are presented, especially a possibility of application of Boolean bent-functions. Finally, we propose integrating neural networks (playing a role of Boolean functions with appropriate properties) in the design process.

Keywords

Neural Network Boolean Function Block Cipher Truth Table Advance Encryption Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FIPS 46-3, Data Encryption Standard (DES), NIST (1999)Google Scholar
  2. 2.
    Kotulski, Z.: Construction of block ciphers: new possibilities (Polish). Mat. Stosow. 4(45), 1–24 (2003)MathSciNetGoogle Scholar
  3. 3.
    FIPS 197, Advanced Encryption Standard (AES). In: NIST 2001(2001)Google Scholar
  4. 4.
    GOST 28147-89, Cryptographic Protection for Data Processing Systems. Cryptographic Transformation Algorithm, Government Standard of the U.S.S.R. (1990)Google Scholar
  5. 5.
    Gan, L., Simmons, S., Tavares, S.: A new family of stream ciphers based on cascades small S-boxes. IEEE, Los Alamitos (1997)Google Scholar
  6. 6.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential Cryptanalysis of Data Encryption Standard. Springer, Berlin (1993)MATHGoogle Scholar
  8. 8.
    Adams, C.M., Tavares, S.E.: Designing S-boxes for Ciphers Resistant to Differential CryptanalysisGoogle Scholar
  9. 9.
    Horzyk, A., Tadeusiewicz, R.: Self-Optimizing Neural Networks. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 150–155. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Knudsen, L.R.: Practically Secure Feistel Ciphers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 211–222. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)Google Scholar
  12. 12.
    Mister, S., Adams, C.: Practical S-Box Design. In: Workshop on Selected Areas in Cryptography (SAC 1996) Workshop Record, pp. 61–76. Queens University (1996)Google Scholar
  13. 13.
    Adams, C.M., Tavares, S.E.: The Use of Bent Sequences do Achieve Higher Order Strict Criterion in S-Box Design TRTR 90-013 (January 1990)Google Scholar
  14. 14.
    Grocholewska-Czurylo, A.: Avalanche and propagation properties of random bent Boolean functions. In: Proc. RMCIS 2003, p. 9.3. Zegrze (2003)Google Scholar
  15. 15.
    Szmidt, J.: Cryptographic properties of the Boolean functions. In: Proceedings of the 5th National Conference on Cryptography ENIGMA 2001, Warsaw (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Piotr Kotlarz
    • 1
  • Zbigniew Kotulski
    • 2
  1. 1.Kazimierz Wielki UniversityBydgoszcz
  2. 2.Institute of Telecommunications of WUTInstitute of Fundamental Technological Research of the Polish Academy of SciencesWarsaw

Personalised recommendations